Chute des corps dans l'air
                              
					
					
                    
                    
                      
                         | 
                        Un ancien ministre de l'éducation (avec sa fougue habituelle) avait déclaré qu'une balle   de tennis et une boule de pétanque tombaient de la même façon. 
Dans le vide c'est bien sur exact. Mais dans l'air, les frottements font que   la boule de pétanque atteint le sol la première. 
                        Si l'on admet (en accord avec l'expérience) que l'air provoque une   force de frottement proportionnelle au carré de la vitesse du mobile,   on peut écrire que : mdv / dt = m.g − K.v.v.  (1)  | 
                      
                      
                        Si S est l'aire de la surface du mobile perpendiculaire à la direction   du mouvement, Cx le coefficient aérodynamique du mobile et ρ la masse volumique de l'air, on a K = Cx.ρ.S / 2. Pour   une sphère l'expérience donne Cx = 0,44. 
                          Si l'on pose u2 = 2mg / CxρS, on peut écrire la projection de   l'équation (1) sur un axe vertical sous la forme :  
                          dv / dt  = g(1   − v2 / u2). 
Il existe une solution analytique pour cette   équation différentielle, mais dans cette page on utilise l'intégration   numérique par la méthode de Runge-Kutta à l'ordre 4.                           
                           
                          Utilisation : 
                           Le programme calcule par intégration numérique la durée   de la chute (la vitesse initiale étant nulle) pour une boule de pétanque   (masse 700 g, diamètre 7,5 cm) et pour une balle de tennis (masse 55   g , diamètre 6,7 cm) ainsi que la vitesse lors du contact avec le sol.   La durée de la chute et la vitesse du mobile lors de l'impact sont aussi   calculés pour un objet en chute libre dans le vide. 
On peut choisir la hauteur de chute entre 1 m et 200 m. 
Quelle est la dimension   de u ? Calculer u pour la boule et pour la balle. (ρ = 1,29 g/l).  
On peut noter que même pour des hauteurs de chute faibles, l'écart   est facilement décelable.
   |