Définitions.

annuités constantes - amortissements constants - TEG et TAEG

A. Claeys

GEA - IUT A - Lille 1

Février 2013

Plan

- Définitions.
 - Emprunt indivis annuité amortissement.
 - Annuité de fin de période.
- 2 Un exemple d'emprunt.
 - Calcul de l'annuité.
 - Tableau d'amortissement.
 - Taux unique équivalent.
 - Taux actuariel effectif global (TAEG).
- 3 Emprunt à annuités constantes.
 - Formule des annuités fixes.
 - Tableau d'amortissement.
 - Progression des amortissements.
 - Taux effectif global, taux actuariel effectif global (TEG TAEG).
- 4 Emprunt à amortissements constants.
 - Formule des amortissments.
 - Tableau d'amortissement.

iüt

Plan

- Définitions.
 - Emprunt indivis annuité amortissement.
 - Annuité de fin de période.
- - Calcul de l'annuité.
 - Tableau d'amortissement.
 - Taux unique équivalent.
 - Taux actuariel effectif global (TAEG).
- - Formule des annuités fixes.
 - Tableau d'amortissement.
 - Progression des amortissements.
 - Taux effectif global, taux actuariel effectif global (TEG TAEG).
- - Formule des amortissments.

40) 40) 45) 45)

Définitions.

Définition

Emprunt indivis : emprunt contracté auprès d'un seul prêteur.

Définition

Annuités : montants versés périodiquement pour le remboursement.

Définition

Définition

Emprunt indivis : emprunt contracté auprès d'un seul prêteur.

Définition

Annuités : montants versés périodiquement pour le remboursement.

Définition

Définitions.

Définition

Emprunt indivis : emprunt contracté auprès d'un seul prêteur.

Définition

Annuités : montants versés périodiquement pour le remboursement.

Définition

Définitions.

Définition

Emprunt indivis : emprunt contracté auprès d'un seul prêteur.

Définition

Annuités : montants versés périodiquement pour le remboursement.

Définition

Plan

- ① Définitions.
 - Emprunt indivis annuité amortissement.
 - Annuité de fin de période.
- 2 Un exemple d'emprunt
 - Calcul de l'annuité.
 - Tableau d'amortissement.
 - Taux unique équivalent.
 - Taux actuariel effectif global (TAEG).
- Formule des annuités fixes.
 - Formule des annuites fixes
 - Tableau d'amortissement.
 - Progression des amortissements.
 - Taux effectif global, taux actuariel effectif global (TEG TAEG).
- 4 Emprunt à amortissements constants.
 - Formule des amortissments.
 - Tableau d'amortissement

Dans ce cours, on considère le cas des annuités de fin de période :

- Le débiteur paie la première annuité une période après le versement du capital.
- L'intérêt est calculé sur le capital restant dû en début de période.

Dans ce cours, on considère le cas des annuités de fin de période :

- Le débiteur paie la première annuité une période après le versement du capital.
- L'intérêt est calculé sur le capital restant dû en début de période.

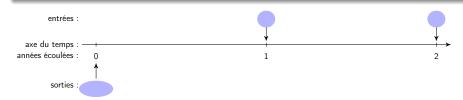
Annuité de fin de période.

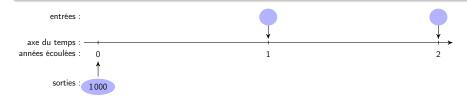
Dans ce cours, on considère le cas des annuités de fin de période :

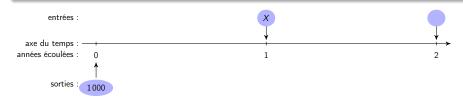
- Le débiteur paie la première annuité une période après le versement du capital.
- L'intérêt est calculé sur le capital restant dû en début de période.

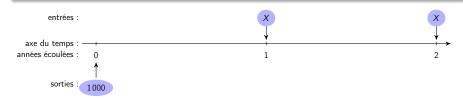
Définitions.

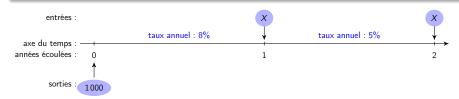
- - Emprunt indivis annuité amortissement.
 - Annuité de fin de période.
- 2 Un exemple d'emprunt.
 - Calcul de l'annuité.
 - Tableau d'amortissement.
 - Taux unique équivalent.
 - Taux actuariel effectif global (TAEG).
- - Formule des annuités fixes.
 - Tableau d'amortissement.
 - Progression des amortissements.
 - Taux effectif global, taux actuariel effectif global (TEG TAEG).
- - Formule des amortissments.

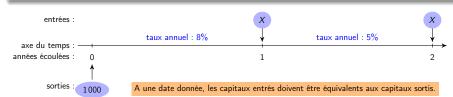



Exemple

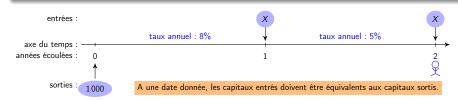

Exemple


Exemple

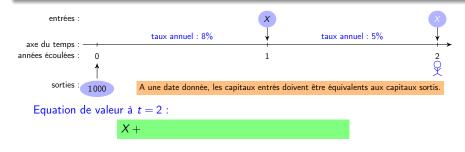

Exemple


Exemple

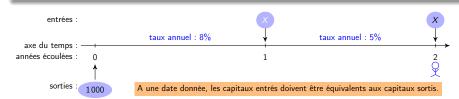
Exemple



Exemple


Exemple

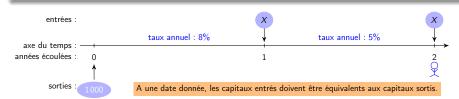
André emprunte 1000€ remboursable en 2 annuités égales à terme échu. Année 1 : taux effectif annuel 8%. Année 2 : taux effectif annuel 5%.


Equation de valeur à t = 2:

Exemple

Exemple

André emprunte 1000€ remboursable en 2 annuités égales à terme échu. Année 1 : taux effectif annuel 8%. Année 2 : taux effectif annuel 5%.

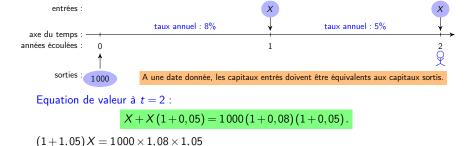


Equation de valeur à t = 2:

$$X + X(1+0.05) =$$

Exemple

André emprunte 1000€ remboursable en 2 annuités égales à terme échu. Année 1 : taux effectif annuel 8%. Année 2 : taux effectif annuel 5%.



Equation de valeur à t = 2:

$$X + X(1+0.05) = 1000(1+0.08)(1+0.05).$$

Exemple

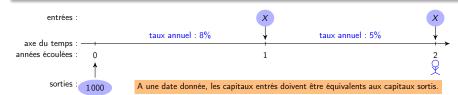
André emprunte 1000€ remboursable en 2 annuités égales à terme échu. Année 1 : taux effectif annuel 8%. Année 2 : taux effectif annuel 5%.

iüt

Exemple

André emprunte 1000€ remboursable en 2 annuités égales à terme échu. Année 1 : taux effectif annuel 8%. Année 2 : taux effectif annuel 5%.

Equation de valeur à t=2:


$$X + X(1+0.05) = 1000(1+0.08)(1+0.05).$$

$$(1+1,05)X = 1000 \times 1,08 \times 1,05$$

$$X = \frac{1000 \times 1,08 \times 1,05}{2,05}$$

Exemple

André emprunte 1000€ remboursable en 2 annuités égales à terme échu. Année 1 : taux effectif annuel 8%. Année 2 : taux effectif annuel 5%.

Equation de valeur à t = 2:

$$X + X(1+0.05) = 1000(1+0.08)(1+0.05).$$

$$(1+1,05) X = 1000 \times 1,08 \times 1,05$$

$$X = \frac{1000 \times 1,08 \times 1,05}{2,05}$$

Plan

Définitions.

- Définitions
 - Emprunt indivis annuité amortissement.
 - Annuité de fin de période.
- 2 Un exemple d'emprunt.
 - Calcul de l'annuité.
 - Tableau d'amortissement.
 - Taux unique équivalent.
 - Taux actuariel effectif global (TAEG).
- 3 Emprunt à annuités constantes
 - Formule des annuités fixes.
 - Tableau d'amortissement.
 - Progression des amortissements.
 - Taux effectif global, taux actuariel effectif global (TEG TAEG).
- 4 Emprunt à amortissements constants.
 - Formule des amortissments.
 - Tableau d'amortissement.

ii it

Définitions.

• Remboursements du capital et des intérêts à chaque période.

	Capital dû en début de période	Annuité	Amortissement	Intérêt	Capital dû en fin de période
1					
2					

• Remboursements du capital et des intérêts à chaque période.

Date	Capital dû en début de période	Annuité	Amortissement	Intérêt	Capital dû en fin de période
1					
2					

	1121																			
	: A	ി പ	da	+-	1															
 . •	: _	·ıa	·ua	ILC	<u> </u>	 		 												
											1									
											1									
											1									
								 			1									
											1									

• Remboursements du capital et des intérêts à chaque période.

Date	Capital dû en début de période	Annuité	Amortissement	Intérêt	Capital dû en fin de période
1	D ₀ = 1000,00€				
2					

Dette :
$$D_0 = 1000$$
€.

• Remboursements du capital et des intérêts à chaque période.

Date	Capital dû en début de période	Annuité	Amortissement	Intérêt	Capital dû en fin de période
1	$D_0 = 1000,00 =$			<i>I</i> ₁ = 80€	
2					

• A la date 1 :

Dette :
$$D_0 = 1000$$
€.

Interest:
$$I_1 = 1000 \times 0.08 = 80 = 0.08$$

• Remboursements du capital et des intérêts à chaque période.

Date	Capital dû en début de période	Annuité	Amortissement	Intérêt	Capital dû en fin de période
1	$D_0 = 1000,00 \le$	$a_1 = 553, 17 $		<i>I</i> ₁ = 80€	
2					

• A la date 1 :

Dette : $D_0 = 1000$ €.

Intérêt : $I_1 = 1000 \times 0.08 = 80 \le$.

Annuité : $a_1 = 553, 17 €$.

• Remboursements du capital et des intérêts à chaque période.

Date	Capital dû en début de période	Annuité	Amortissement	Intérêt	Capital dû en fin de période
1	$D_0 = 1000,00 \le$	<i>a</i> ₁ = 553, 17€	$A_1 = 473, 17 \le$	<i>I</i> ₁ = 80 €	
2					

• A la date 1 :

Dette : $D_0 = 1000$ €.

Intérêt : $I_1 = 1000 \times 0.08 = 80$ €.

Annuité : $a_1 = 553, 17 €$.

Amortissement : $A_1 = 553, 17 - 80 = 473, 17 €$.

• Remboursements du capital et des intérêts à chaque période.

Date	Capital dû en début de période	Annuité	Amortissement	Intérêt	Capital dû en fin de période
1	$D_0 = 1000,00 =$	$a_1 = 553, 17 $	$A_1 = 473, 17 \le$	<i>I</i> ₁ = 80€	D ₁ = 526,83€
2					

• A la date 1 :

Dette : $D_0 = 1000$ €.

Intérêt : $I_1 = 1000 \times 0.08 = 80$ €.

Annuité : $a_1 = 553, 17$ €.

Amortissement : $A_1 = 553, 17 - 80 = 473, 17 €$.

Reste dû: $D_1 = 1000 - 473, 17 = 526, 83 \le$.

• Remboursements du capital et des intérêts à chaque période.

Date	Capital dû en début de période	Annuité	Amortissement	Intérêt	Capital dû en fin de période
1	D ₀ = 1000,00€	<i>a</i> ₁ = 553, 17€	$A_1 = 473, 17 \le$	<i>I</i> ₁ = 80€	D ₁ = 526,83€
2					

A la date 1 :

Dette : $D_0 = 1000$ €.

Intérêt : $I_1 = 1000 \times 0,08 = 80$ €.

Annuité : $a_1 = 553, 17$ €.

Amortissement : $A_1 = 553, 17 - 80 = 473, 17$ €.

Reste dû: $D_1 = 1000 - 473, 17 = 526, 83 \le$.

A la date 2 :

iüt)

• Remboursements du capital et des intérêts à chaque période.

Date	Capital dû en début de période	Annuité	Amortissement	Intérêt	Capital dû en fin de période
1	D ₀ = 1000,00€	<i>a</i> ₁ = 553, 17€	$A_1 = 473, 17 \le$	<i>I</i> ₁ = 80€	D ₁ = 526,83€
2	<i>D</i> ₁ = 526,83€				

A la date 1 :

Dette : $D_0 = 1000$ €.

Intérêt : $I_1 = 1000 \times 0,08 = 80$ €.

Annuité : $a_1 = 553, 17$ €.

Amortissement : $A_1 = 553, 17 - 80 = 473, 17$ €.

Reste dû: $D_1 = 1000 - 473, 17 = 526, 83 \le$.

Dette : $D_1 = 526,83$ €.

• Remboursements du capital et des intérêts à chaque période.

Date	Capital dû en début de période	Annuité	Amortissement	Intérêt	Capital dû en fin de période
1	$D_0 = 1000,00 \leq$	$a_1 = 553, 17 $	$A_1 = 473, 17 \le$	<i>I</i> ₁ = 80€	$D_1 = 526,83$ €
2	D ₁ = 526,83€			<i>I</i> ₂ = 26,34€	

A la date 1 :

 $- \times 0.05$

• A la date 2 :

Dette : $D_1 = 526,83$ €.

Dette : $D_0 = 1000$ €.

Intérêt : $I_1 = 1000 \times 0.08 = 80 €$.

Annuité : $a_1 = 553, 17 €$.

Amortissement : $A_1 = 553, 17 - 80 = 473, 17$ €.

Reste dû: $D_1 = 1000 - 473, 17 = 526, 83 \le$.

Interêt : $I_2 = 526,83 \times 0,05 = 26,34 \in$.

iüt)

• Remboursements du capital et des intérêts à chaque période.

Date	Capital dû en début de période	Annuité	Amortissement	Intérêt	Capital dû en fin de période
1	$D_0 = 1000,00 \le$	<i>a</i> ₁ = 553,17€	$A_1 = 473, 17 \le$	<i>I</i> ₁ = 80€	D ₁ = 526,83€
2	D ₁ = 526,83€	$a_2 = 553, 17 \le$		<i>I</i> ₂ = 26,34€	

A la date 1 :

Dette : $D_0 = 1000$ €.

Intérêt : $I_1 = 1000 \times 0.08 = 80$ €.

Annuité : $a_1 = 553, 17$ €.

Amortissement : $A_1 = 553, 17 - 80 = 473, 17$ €.

Reste dû: $D_1 = 1000 - 473, 17 = 526, 83 \le$.

A la date 2 :

Dette : $D_1 = 526,83$ €.

Intérêt : $I_2 = 526,83 \times 0,05 = 26,34$ €.

Annuité : $a_2 = 553, 17$ €.

• Remboursements du capital et des intérêts à chaque période.

Date	Capital dû en début de période	Annuité	Amortissement	Intérêt	Capital dû en fin de période
1	<i>D</i> ₀ = 1000,00€	$a_1 = 553, 17 $	$A_1 = 473, 17 $	<i>I</i> ₁ = 80€	<i>D</i> ₁ = 526,83€
2	D ₁ = 526,83€	<i>a</i> ₂ = 553, 17€	$A_2 = 526,83 =$	<i>I</i> ₂ = 26,34€	

A la date 1 :

Dette : $D_0 = 1000$ €.

Intérêt : $I_1 = 1000 \times 0,08 = 80$ €.

Annuité : $a_1 = 553, 17$ €.

Amortissement : $A_1 = 553, 17 - 80 = 473, 17 €$.

Reste dû: $D_1 = 1000 - 473, 17 = 526, 83 \le$.

• <u>A la date 2</u> :

Dette : $D_1 = 526,83$ €.

Intérêt : $I_2 = 526,83 \times 0,05 = 26,34$ €.

Annuité : $a_2 = 553, 17$ €.

Amortissement : $A_2 = 553, 17 - 26, 34 = 526, 83$ €.

• Remboursements du capital et des intérêts à chaque période.

Date	Capital dû en début de période	Annuité	Amortissement	Intérêt	Capital dû en fin de période
1	$D_0 = 1000,00 =$	<i>a</i> ₁ = 553, 17€	$A_1 = 473, 17 $	<i>I</i> ₁ = 80€	Q ₁ = 526,83€
2	D ₁ = 526,83€	<i>a</i> ₂ = 553, 17€	$A_2 = 526,83 =$	<i>I</i> ₂ = 26,34€	D ₂ = 0,00€

A la date 1 :

Dette : $D_0 = 1000 = ...$

Intérêt : $I_1 = 1000 \times 0,08 = 80$ €.

Annuité : $a_1 = 553, 17$ €.

Amortissement : $A_1 = 553, 17 - 80 = 473, 17$ €

Reste dû : $D_1 = 1000 - 473, 17 = 526, 83$ €.

• <u>A la date 2</u> :

Dette : $D_1 = 526,83$ €.

Interest: $I_2 = 526,83 \times 0,05 = 26,34$ €.

Annuité : $a_2 = 553, 17$ €.

Amortissement : $A_2 = 553, 17 - 26, 34 = 526, 83$ €.

Reste dû: $D_2 = 526,83 - 526,83 = 0,00 \le$.

• Remboursements du capital et des intérêts à chaque période.

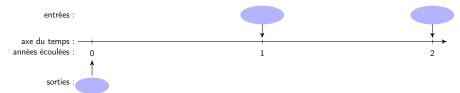
Date	Capital dû en début de période	Annuité	Amortissement	Intérêt	Capital dû en fin de période
1	$D_0 = 1000,00 \le$	$a_1 = 553, 17 $	$A_1 = 473, 17 \le$	<i>I</i> ₁ = 80€	D ₁ = 526,83€
2	D ₁ = 526,83€	<i>a</i> ₂ = 553, 17€	$A_2 = 526,83 =$	<i>I</i> ₂ = 26,34€	D ₂ = 0,00€

Théorème

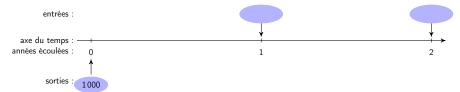
L'annuité a_k de fin de période k est formée d'intérêts et d'amortissement : $a_k = l_k + A_k$,

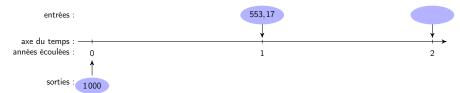
les intérêts I_k se calculent sur le capital dû en début de période k: $I_k = i \cdot D_{k-1}$,

le capital dû est diminué de l'amortissement à chaque période : $D_k = D_{k-1} - A_k$.

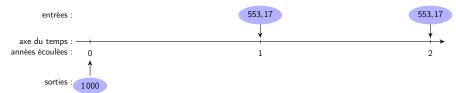

Plan

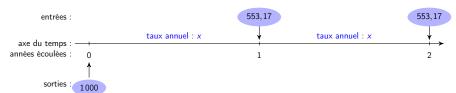
- - Emprunt indivis annuité amortissement.
 - Annuité de fin de période.
- 2 Un exemple d'emprunt.
 - Calcul de l'annuité.
 - Tableau d'amortissement.
 - Taux unique équivalent.
 - Taux actuariel effectif global (TAEG).
- - Formule des annuités fixes.
 - Tableau d'amortissement.
 - Progression des amortissements.
 - Taux effectif global, taux actuariel effectif global (TEG TAEG).
- - Formule des amortissments.


4 D F 4 P F 4 B F 4 B F

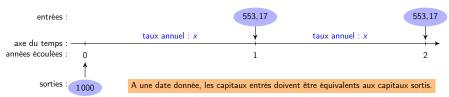


Définitions.

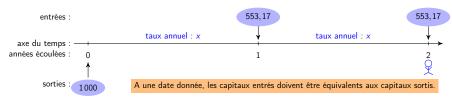

Taux unique équivalent.



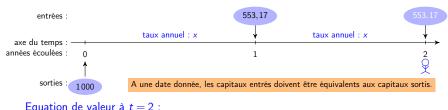
Définitions.



Définitions.



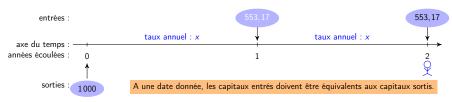
Définitions.



Définitions.

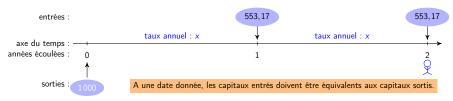
• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.

• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.

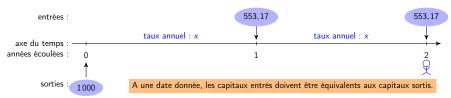


Equation de valeur à t=2:

553.17 +

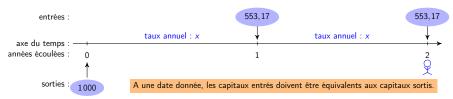

Définitions.

• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.


$$553, 17 + 553, 17(1 + x) =$$

• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.

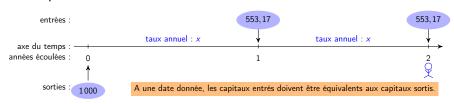
$$553, 17 + 553, 17(1+x) = 1000(1+x)^{2}$$
.


• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.

$$553,17+553,17(1+x)=1000(1+x)^2$$
.

$$X = 1 + x$$
 donne 553, 17 + 553, 17 $X = 1000X^2$,

• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.

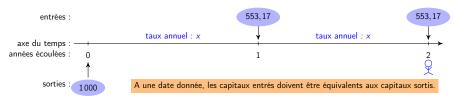

$$553,17+553,17(1+x)=1000(1+x)^2$$
.

$$X = 1 + x$$
 donne 553, 17 + 553, 17 $X = 1000X^2$,

$$1000X^2 - 553,17X - 553,17 = 0.$$

Définitions.

• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.

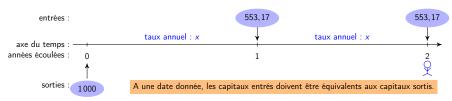

$$553,17+553,17(1+x)=1000(1+x)^2$$
.

$$X = 1 + x$$
 donne 553, 17 + 553, 17 $X = 1000X^2$,

$$1000X^2 - 553, 17X - 553, 17 = 0.$$

Rappel:
$$aX^2 + bX + c = 0$$

• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.


$$553,17+553,17(1+x)=1000(1+x)^2$$
.

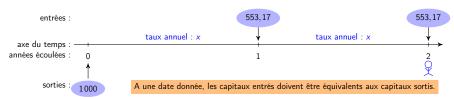
$$X = 1 + x$$
 donne 553, 17 + 553, 17 $X = 1000X^2$,

$$1000X^2 - 553.17X - 553.17 = 0.$$

Rappel :
$$aX^2 + bX + c = 0$$

 $\Delta = b^2 - 4ac$.

 x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.



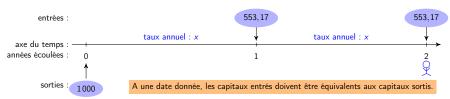
$$553,17+553,17(1+x)=1000(1+x)^2$$
.

$$X = 1 + x$$
 donne 553,17 + 553,17 $X = 1000X^2$,
 $1000X^2 - 553,17X - 553,17 = 0$.

Rappel :
$$aX^2 + bX + c = 0$$

 $\Delta = b^2 - 4ac$.
 $Si \ \Delta > 0 \ alors$

• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.

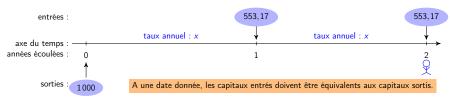


$$553,17+553,17(1+x)=1000(1+x)^2$$
.

$$X = 1 + x$$
 donne 553,17 + 553,17 $X = 1000X^2$,
 $1000X^2 - 553,17X - 553,17 = 0$.

$$\begin{aligned} \text{Rappel} : aX^2 + bX + c &= 0 \\ \Delta &= b^2 - 4ac. \\ \textit{Si } \Delta &> 0 \textit{ alors} \\ X_1 &= \frac{-b - \sqrt{\Delta}}{2a} \textit{ et } X_2 &= \frac{-b + \sqrt{\Delta}}{2a}. \end{aligned}$$

 x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.


$$553,17+553,17(1+x)=1000(1+x)^2$$
.

$$X = 1 + x$$
 donne 553,17 + 553,17 $X = 1000X^2$,
 $1000X^2 - 553,17X - 553,17 = 0$.

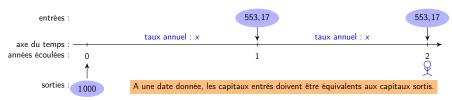
$$\Delta = 2518677,0489$$

Rappel :
$$aX^2 + bX + c = 0$$

 $\Delta = b^2 - 4ac$.
 $Si \Delta > 0 \ alors$
 $X_1 = \frac{-b - \sqrt{\Delta}}{2a} \ et \ X_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.

$$553,17+553,17(1+x)=1000(1+x)^2$$
.


$$X = 1 + x \text{ donne } 553, 17 + 553, 17X = 1000X^2,$$

$$1000X^2 - 553, 17X - 553, 17 = 0.$$

$$\Delta = 2518677,0489$$

$$X_1 = -0,5169$$

Rappel:
$$aX^2 + bX + c = 0$$

 $\Delta = b^2 - 4ac$.
 $Si \Delta > 0 \ alors$
 $X_1 = \frac{-b - \sqrt{\Delta}}{2a} \ \text{et} \ X_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.

$$553,17+553,17(1+x)=1000(1+x)^2$$
.

$$X = 1 + x$$
 donne 553,17 + 553,17 $X = 1000X^2$,
 $1000X^2 - 553,17X - 553,17 = 0$.

$$\Delta = 2518677,0489$$

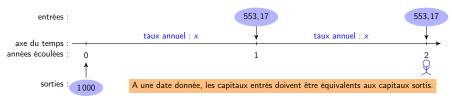
$$X_1 = -0.5169$$
 donc $1 + x = -0.5169$

Rappel:
$$aX^2 + bX + c = 0$$

 $\Delta = b^2 - 4ac$.
 $Si \Delta > 0 \ alors$
 $X_1 = \frac{-b - \sqrt{\Delta}}{2a} \ et \ X_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.

$$553,17+553,17(1+x)=1000(1+x)^2$$
.


$$X = 1 + x$$
 donne 553,17 + 553,17 $X = 1000X^2$,
 $1000X^2 - 553,17X - 553,17 = 0$.

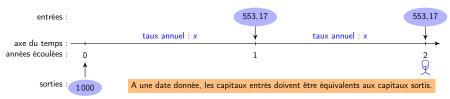
$$\Delta = 2518677,0489$$

$$X_1 = -0.5169$$
 donc $1 + x = -0.5169$ donc $x = -1.5169$

$$\begin{aligned} \text{Rappel} : & aX^2 + bX + c = 0 \\ & \Delta = b^2 - 4ac. \\ & Si \ \Delta > 0 \ alors \\ & X_1 = \frac{-b - \sqrt{\Delta}}{2a} \ \text{et} \ X_2 = \frac{-b + \sqrt{\Delta}}{2a}. \end{aligned}$$

• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.

$$553,17+553,17(1+x) = 1000(1+x)^2$$
.


$$X = 1 + x$$
 donne 553,17 + 553,17 $X = 1000X^2$,
 $1000X^2 - 553,17X - 553,17 = 0$.

$$\Delta = 2518677,0489$$

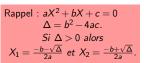
$$X_1 = -0.5169$$
 donc $1 + x = -0.5169$ donc $x = -1.5169$ (inacceptable).

Rappel :
$$aX^2 + bX + c = 0$$

 $\Delta = b^2 - 4ac$.
 $Si \Delta > 0$ alors
 $X_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $X_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

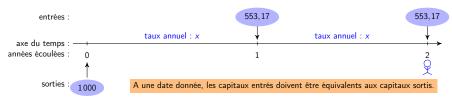
• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.

Equation de valeur à t = 2:


$$553,17+553,17(1+x) = 1000(1+x)^2$$
.

$$X = 1 + x$$
 donne 553,17 + 553,17 $X = 1000X^2$,
 $1000X^2 - 553,17X - 553,17 = 0$.

$$\Delta = 2518677,0489$$

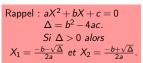

$$X_1 = -0.5169$$
 donc $1 + x = -0.5169$ donc $x = -1.5169$ (inacceptable).

$$X_2 = 1,0701$$

iüt)

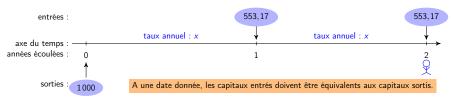
• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.

Equation de valeur à t = 2:


$$553,17+553,17(1+x) = 1000(1+x)^2$$
.

$$\begin{split} X &= 1 + x \text{ donne } 553, 17 + 553, 17X = 1000X^2, \\ 1000X^2 - 553, 17X - 553, 17 = 0. \end{split}$$

$$\Delta = 2518677,0489$$


$$X_1 = -0.5169$$
 donc $1 + x = -0.5169$ donc $x = -1.5169$ (inacceptable).

$$X_2 = 1,0701 \text{ donc } 1 + x = 1,0701$$

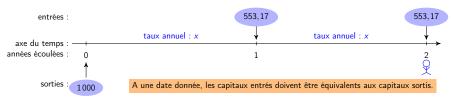
iüt)

• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.

Equation de valeur à t=2:

$$553, 17 + 553, 17(1+x) = 1000(1+x)^{2}$$
.

$$X = 1 + x$$
 donne 553,17 + 553,17 $X = 1000X^2$,
1000 $X^2 - 553$,17 $X - 553$,17 - 0


$$\Delta = b^2 - 4ac$$
.
 $\Delta = 2518677,0489$ $\Delta = b^2 - 4ac$.
 $\Delta = b^2 - 4ac$.

$$X_1 = -0.5169$$
 donc $1 + x = -0.5169$ donc $x = -1.5169$ (inacceptable).

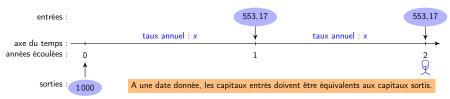
$$X_2 = 1,0701 \text{ donc } 1 + x = 1,0701 \text{ donc } x = 0,0701$$

Rappel: $aX^2 + bX + c = 0$

• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.

$$553, 17 + 553, 17(1+x) = 1000(1+x)^{2}$$
.

$$\begin{split} X &= 1 + \text{x donne } 553, 17 + 553, 17X = 1000X^2, \\ 1000X^2 - 553, 17X - 553, 17 = 0. \end{split}$$


$$\Delta = 2518677,0489$$

$$\begin{aligned} & \text{Rappel} : aX^2 + bX + c = 0 \\ & \Delta = b^2 - 4ac. \\ & Si \; \Delta > 0 \; alors \\ & X_1 = \frac{-b - \sqrt{\Delta}}{2a} \; \text{ et } \; X_2 = \frac{-b + \sqrt{\Delta}}{2a}. \end{aligned}$$

$$X_1 = -0.5169$$
 donc $1 + x = -0.5169$ donc $x = -1.5169$ (inacceptable).

$$X_2 = 1,0701 \text{ donc } 1 + x = 1,0701 \text{ donc } x = 0,0701 \text{ (acceptable)}.$$

• x : taux unique qui donnerait deux annuités de 553,17€ pour un emprunt de 1000€.

$$553, 17 + 553, 17(1+x) = 1000(1+x)^{2}$$
.

$$X = 1 + x$$
 donne 553,17 + 553,17 $X = 1000X^2$,
 $1000X^2 - 553,17X - 553,17 = 0$.
 $\Delta = 2518677,0489$

$$\begin{aligned} \text{Rappel}: & aX^2 + bX + c = 0 \\ & \Delta = b^2 - 4ac. \\ & Si \; \Delta > 0 \; alors \\ & X_1 = \frac{-b - \sqrt{\Delta}}{2a} \; \text{ et } X_2 = \frac{-b + \sqrt{\Delta}}{2a}. \end{aligned}$$

$$X_1 = -0.5169$$
 donc $1 + x = -0.5169$ donc $x = -1.5169$ (inacceptable).

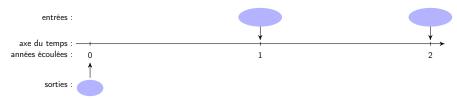
$$X_2 = 1,0701 \text{ donc } 1 + x = 1,0701 \text{ donc } x = 0,0701 \text{ (acceptable)}.$$

Plan

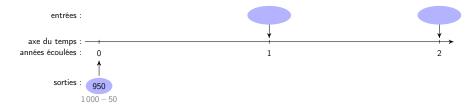
Définitions

- Définitions
 - Emprunt indivis annuité amortissement.
 - Annuité de fin de période.
- 2 Un exemple d'emprunt.
 - Calcul de l'annuité.
 - Tableau d'amortissement.
 - Taux unique équivalent.
 - Taux actuariel effectif global (TAEG).
- 3 Emprunt à annuités constantes
 - Formule des annuités fixes.
 - Tableau d'amortissement.
 - Progression des amortissements.
 - Taux effectif global, taux actuariel effectif global (TEG TAEG).
- 4 Emprunt à amortissements constants.
 - Formule des amortissments.
 - Tableau d'amortissement

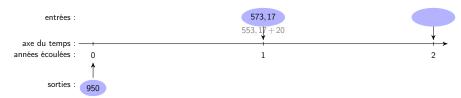
ii it

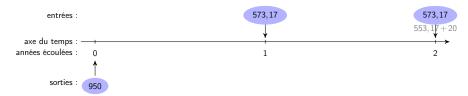

Taux actuariel effectif global.

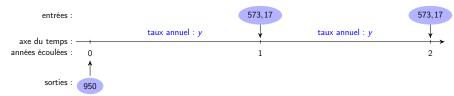
• Frais de dossier : $50 \le$ (versé à t = 0), assurance annuelle : $20 \le$ (versé en fin d'année) y : taux annuel effectif assurant l'équivalence entrées-sorties.

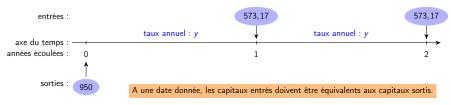


Taux actuariel effectif global.

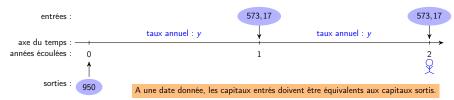

• Frais de dossier : $50 \le$ (versé à t = 0), assurance annuelle : $20 \le$ (versé en fin d'année) y : taux annuel effectif assurant l'équivalence entrées-sorties.


Frais de dossier : 50 € (versé à t = 0), assurance annuelle : 20 € (versé en fin d'année)
 y : taux annuel effectif assurant l'équivalence entrées-sorties.


Frais de dossier : 50 € (versé à t = 0), assurance annuelle : 20 € (versé en fin d'année)
 y : taux annuel effectif assurant l'équivalence entrées-sorties.


Frais de dossier : 50 € (versé à t = 0), assurance annuelle : 20 € (versé en fin d'année)
 y : taux annuel effectif assurant l'équivalence entrées-sorties.

• Frais de dossier : $50 \le$ (versé à t=0), assurance annuelle : $20 \le$ (versé en fin d'année) y : taux annuel effectif assurant l'équivalence entrées-sorties.

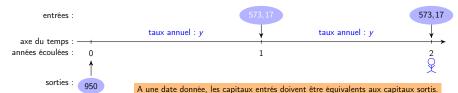


• Frais de dossier : $50 \le$ (versé à t=0), assurance annuelle : $20 \le$ (versé en fin d'année) y : taux annuel effectif assurant l'équivalence entrées-sorties.

Définitions.

 Frais de dossier : 50€ (versé à t = 0), assurance annuelle : 20€(versé en fin d'année) y : taux annuel effectif assurant l'équivalence entrées-sorties.

Définitions.


 Frais de dossier : 50€ (versé à t = 0), assurance annuelle : 20€(versé en fin d'année) y : taux annuel effectif assurant l'équivalence entrées-sorties.

Equation de valeur à t=2:


573.17 +

Frais de dossier : 50€ (versé à t = 0), assurance annuelle : 20€(versé en fin d'année)
 y : taux annuel effectif assurant l'équivalence entrées-sorties.

$$573, 17 + 573, 17(1 + y) =$$

• Frais de dossier : $50 \le$ (versé à t=0), assurance annuelle : $20 \le$ (versé en fin d'année) y : taux annuel effectif assurant l'équivalence entrées-sorties.

$$573, 17 + 573, 17(1+y) = 950(1+y)^{2}$$
.

Frais de dossier : 50 € (versé à t = 0), assurance annuelle : 20 € (versé en fin d'année)
 y : taux annuel effectif assurant l'équivalence entrées-sorties.

$$573,17+573,17(1+y) = 950(1+y)^2$$
.

$$Y = 1 + y$$
 donne 573, $17 + 573$, $17Y = 950Y^2$,

Frais de dossier : 50€ (versé à t = 0), assurance annuelle : 20€(versé en fin d'année)
 y : taux annuel effectif assurant l'équivalence entrées-sorties.

$$573, 17 + 573, 17(1+y) = 950(1+y)^{2}$$
.

$$Y = 1 + y$$
 donne $573, 17 + 573, 17Y = 950Y^2$,

$$950Y^2 - 573, 17Y - 573, 17 = 0.$$

• Frais de dossier : $50 \le$ (versé à t = 0), assurance annuelle : $20 \le$ (versé en fin d'année) y : taux annuel effectif assurant l'équivalence entrées-sorties.

$$573,17+573,17(1+y) = 950(1+y)^2$$
.

$$Y = 1 + y$$
 donne $573, 17 + 573, 17Y = 950Y^2$,

$$950Y^2 - 573,17Y - 573,17 = 0.$$

Rappel:
$$aY^2 + bY + c = 0$$

• Frais de dossier : $50 \le$ (versé à t = 0), assurance annuelle : $20 \le$ (versé en fin d'année) y : taux annuel effectif assurant l'équivalence entrées-sorties.

$$573, 17 + 573, 17(1+y) = 950(1+y)^{2}$$
.


$$Y = 1 + y$$
 donne 573, 17 + 573, 17 $Y = 950 Y^2$,

$$950Y^2 - 573, 17Y - 573, 17 = 0.$$

Rappel:
$$aY^2 + bY + c = 0$$

$$A = b^2 - 4ac$$

Frais de dossier : 50 € (versé à t = 0), assurance annuelle : 20 € (versé en fin d'année)
 y : taux annuel effectif assurant l'équivalence entrées-sorties.

$$573,17+573,17(1+y) = 950(1+y)^2$$
.

$$Y = 1 + y$$
 donne 573, 17 + 573, 17 $Y = 950 Y^2$,

$$950Y^2 - 573, 17Y - 573, 17 = 0.$$

Rappel :
$$aY^2 + bY + c = 0$$

 $\Delta = b^2 - 4ac$.
Si $\Delta > 0$ alors

Frais de dossier : 50€ (versé à t = 0), assurance annuelle : 20€(versé en fin d'année)
 y : taux annuel effectif assurant l'équivalence entrées-sorties.


$$573,17+573,17(1+y) = 950(1+y)^2$$
.

$$Y = 1 + y$$
 donne $573, 17 + 573, 17Y = 950Y^2,$

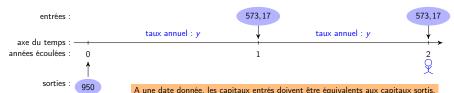
$$950Y^2 - 573,17Y - 573,17 = 0.$$

Rappel:
$$aY^2 + bY + c = 0$$

 $\Delta = b^2 - 4ac$.
Si $\Delta > 0$ alors
 $Y_1 = \frac{-b - \sqrt{\Delta}}{2}$ et $Y_2 = \frac{-b + \sqrt{\Delta}}{2}$.

Frais de dossier : 50 € (versé à t = 0), assurance annuelle : 20 € (versé en fin d'année)
 y : taux annuel effectif assurant l'équivalence entrées-sorties.

$$573, 17 + 573, 17(1+y) = 950(1+y)^{2}$$
.


$$Y = 1 + y$$
 donne $573, 17 + 573, 17Y = 950Y^2$

$$950Y^2 - 573, 17Y - 573, 17 = 0.$$

$$\Delta = 2506569,8489$$

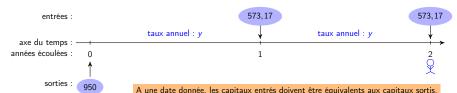
Rappel:
$$aY^2 + bY + c = 0$$

 $\Delta = b^2 - 4ac$.
Si $\Delta > 0$ alors
 $Y_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $Y_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

• Frais de dossier : $50 \le$ (versé à t = 0), assurance annuelle : $20 \le$ (versé en fin d'année) y : taux annuel effectif assurant l'équivalence entrées-sorties.

$$573,17+573,17(1+y) = 950(1+y)^2$$
.

$$Y = 1 + y$$
 donne 573, 17 + 573, 17 $Y = 950 Y^2$,


$$950Y^2 - 573,17Y - 573,17 = 0.$$

$$\Delta = 2506569,8489$$

$$Y_1 = -0,5316$$

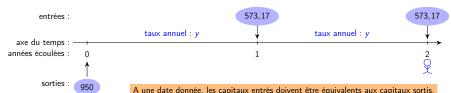
Rappel:
$$aY^2 + bY + c = 0$$

 $\Delta = b^2 - 4ac$.
Si $\Delta > 0$ alors
 $Y_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $Y_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Frais de dossier : 50 € (versé à t = 0), assurance annuelle : 20 € (versé en fin d'année)
 y : taux annuel effectif assurant l'équivalence entrées-sorties.

$$573,17+573,17(1+y) = 950(1+y)^2$$
.

$$Y = 1 + y$$
 donne 573, 17 + 573, 17 $Y = 950Y^2$.


$$950Y^2 - 573, 17Y - 573, 17 = 0.$$

$$\Delta = 2506569,8489$$

$$Y_1 = -0.5316$$
 donc $1 + y = -0.5316$

Rappel:
$$aY^2 + bY + c = 0$$

 $\Delta = b^2 - 4ac$.
 $Si \Delta > 0 \ alors$
 $Y_1 = \frac{-b - \sqrt{\Delta}}{2a} \ \text{et} \ Y_2 = \frac{-b + \sqrt{\Delta}}{2a}$

• Frais de dossier : $50 \le$ (versé à t=0), assurance annuelle : $20 \le$ (versé en fin d'année) y : taux annuel effectif assurant l'équivalence entrées-sorties.

$$573,17+573,17(1+y) = 950(1+y)^2$$
.

$$Y = 1 + y$$
 donne $573, 17 + 573, 17Y = 950Y^2$

$$950Y^2 - 573, 17Y - 573, 17 = 0.$$

$$\Delta = 2506569,8489$$

$$Y_1 = -0.5316$$
 donc $1 + y = -0.5316$ donc $y = -1.5316$

Rappel:
$$aY^2 + bY + c = 0$$

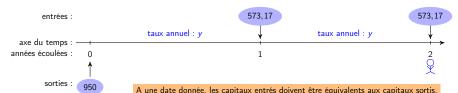
 $\Delta = b^2 - 4ac$.
 $Si \Delta > 0 \ alors$
 $Y_1 = \frac{-b - \sqrt{\Delta}}{2a} \ \text{et} \ Y_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

• Frais de dossier : $50 \le$ (versé à t = 0), assurance annuelle : $20 \le$ (versé en fin d'année) y : taux annuel effectif assurant l'équivalence entrées-sorties.

Equation de valeur à t = 2:

$$573,17+573,17(1+y)=950(1+y)^2$$
.

$$Y = 1 + y$$
 donne $573, 17 + 573, 17Y = 950Y^2$


$$950Y^2 - 573,17Y - 573,17 = 0.$$

$$\Delta = 2506569,8489$$

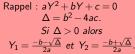
$$Y_1 = -0.5316$$
 donc $1 + y = -0.5316$ donc $y = -1.5316$ (inacceptable).

 $\begin{aligned} \text{Rappel}: & \, aY^2 + bY + c = 0 \\ & \Delta = b^2 - 4ac. \\ & \mathit{Si} \, \, \Delta > 0 \, \, \mathit{alors} \\ & Y_1 = \frac{-b - \sqrt{\Delta}}{2a} \, \, \mathit{et} \, \, Y_2 = \frac{-b + \sqrt{\Delta}}{2a}. \end{aligned}$

• Frais de dossier : $50 \le$ (versé à t = 0), assurance annuelle : $20 \le$ (versé en fin d'année) y : taux annuel effectif assurant l'équivalence entrées-sorties.

Equation de valeur à t = 2:

$$573, 17 + 573, 17(1+y) = 950(1+y)^{2}$$
.


$$Y = 1 + y$$
 donne 573, 17 + 573, 17 $Y = 950 Y^2$,

$$950Y^2 - 573,17Y - 573,17 = 0.$$

$$\Delta = 2506569,8489$$

$$Y_1 = -0.5316$$
 donc $1 + y = -0.5316$ donc $y = -1.5316$ (inacceptable).

$$Y_2 = 1,1349$$

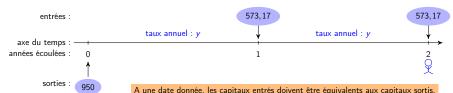
ïüt≯

• Frais de dossier : $50 \le$ (versé à t = 0), assurance annuelle : $20 \le$ (versé en fin d'année) y : taux annuel effectif assurant l'équivalence entrées-sorties.

$$573,17+573,17(1+y)=950(1+y)^2$$
.

$$Y = 1 + y$$
 donne $573, 17 + 573, 17Y = 950Y^2$

$$950Y^2 - 573,17Y - 573,17 = 0.$$


$$\Delta = 2506569,8489$$

Rappel:
$$aY^2 + bY + c = 0$$

 $\Delta = b^2 - 4ac$.
 $Si \Delta > 0 \ alors$
 $Y_1 = \frac{-b - \sqrt{\Delta}}{2a} \ \text{et} \ Y_2 = \frac{-b + \sqrt{\Delta}}{2a}$

$$Y_1 = -0.5316$$
 donc $1 + y = -0.5316$ donc $y = -1.5316$ (inacceptable).

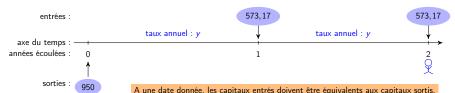
$$Y_2 = 1,1349$$
 donc $1 + y = 1,1349$

• Frais de dossier : $50 \le$ (versé à t = 0), assurance annuelle : $20 \le$ (versé en fin d'année) y : taux annuel effectif assurant l'équivalence entrées-sorties.

$$573,17+573,17(1+y)=950(1+y)^2$$
.

$$Y = 1 + y$$
 donne 573, 17 + 573, 17 $Y = 950 Y^2$

$$950Y^2 - 573,17Y - 573,17 = 0.$$


$$\Delta = 2506569,8489$$

Rappel:
$$aY^2 + bY + c = 0$$

 $\Delta = b^2 - 4ac$.
 $Si \Delta > 0 \ alors$
 $Y_1 = \frac{-b - \sqrt{\Delta}}{2} \ et \ Y_2 = \frac{-b + \sqrt{\Delta}}{2}$.

$$Y_1 = -0,5316$$
 donc $1 + y = -0,5316$ donc $y = -1,5316$ (inacceptable).

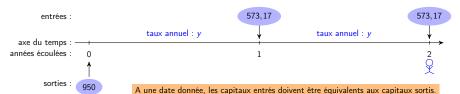
$$Y_2 = 1,1349$$
 donc $1 + y = 1,1349$ donc $y = 0,1349$

• Frais de dossier : $50 \le$ (versé à t=0), assurance annuelle : $20 \le$ (versé en fin d'année) y : taux annuel effectif assurant l'équivalence entrées-sorties.

$$573,17+573,17(1+y) = 950(1+y)^2$$
.

$$Y = 1 + y$$
 donne 573, 17 + 573, 17 $Y = 950 Y^2$,

$$950Y^2 - 573,17Y - 573,17 = 0.$$


$$\Delta = 2506569,8489$$

Rappel:
$$aY^2 + bY + c = 0$$

 $\Delta = b^2 - 4ac$.
Si $\Delta > 0$ alors
 $Y_1 = \frac{-b - \sqrt{\Delta}}{2}$ et $Y_2 = \frac{-b + \sqrt{\Delta}}{2}$

$$Y_1 = -0.5316$$
 donc $1 + y = -0.5316$ donc $y = -1.5316$ (inacceptable).

$$Y_2 = 1,1349$$
 donc $1 + y = 1,1349$ donc $y = 0,1349$ (acceptable).

• Frais de dossier : $50 \le$ (versé à t=0), assurance annuelle : $20 \le$ (versé en fin d'année) y : taux annuel effectif assurant l'équivalence entrées-sorties.

Equation de valeur à t = 2:

$$573,17+573,17(1+y)=950(1+y)^2$$
.

$$Y = 1 + y$$
 donne 573, 17 + 573, 17 $Y = 950 Y^2$,

$$950Y^2 - 573,17Y - 573,17 = 0.$$

$$\Delta = 2506569,8489$$

Rappel:
$$aY^2 + bY + c = 0$$

 $\Delta = b^2 - 4ac$.
Si $\Delta > 0$ alors
 $Y_1 = \frac{-b - \sqrt{\Delta}}{2}$ et $Y_2 = \frac{-b + \sqrt{\Delta}}{2}$.

$$Y_1 = -0.5316$$
 donc $1 + y = -0.5316$ donc $y = -1.5316$ (inacceptable).

$$Y_2 = 1{,}1349 \text{ donc } 1 + y = 1{,}1349 \text{ donc } y = 0{,}1349 \text{ (acceptable)}.$$

TAEG : y = 0,1349 soit 13,49% annuel.

- Annuités : $2 \times 553, 17 = 1106, 34 \le$.
- Frais de dossier : 50€.
- Assurance : $2 \times 20 = 40 = 0$.
- Le coût du crédit est de

$$1106,34+50+40=1196,34 \in$$
.

- Annuités : $2 \times 553, 17 = 1106, 34$ €.
- Frais de dossier : 50€.
- Assurance : $2 \times 20 = 40 \rightleftharpoons$.
- Le coût du crédit est de

$$1106,34+50+40=1196,34 \in$$
.

- Annuités : $2 \times 553, 17 = 1106, 34$ €.
- Frais de dossier : 50€.
- Assurance : $2 \times 20 = 40 \rightleftharpoons$.
- Le coût du crédit est de

$$1106,34+50+40=1196,34 \in$$
.

- Annuités : $2 \times 553, 17 = 1106, 34 \le$.
- Frais de dossier : 50€.
- Assurance : $2 \times 20 = 40 \rightleftharpoons$.
- Le coût du crédit est de

$$1106,34+50+40=1196,34$$
€.

Définitions.

- - Emprunt indivis annuité amortissement.
 - Annuité de fin de période.
- - Calcul de l'annuité.
 - Tableau d'amortissement.
 - Taux unique équivalent.
 - Taux actuariel effectif global (TAEG).
- Emprunt à annuités constantes.
 - Formule des annuités fixes.
 - Tableau d'amortissement.
 - Progression des amortissements.
 - Taux effectif global, taux actuariel effectif global (TEG TAEG).
- - Formule des amortissments.

• Emprunt : D euros (à t = 0).

entrées :

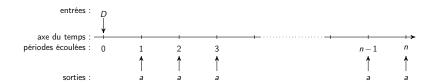

Définitions.

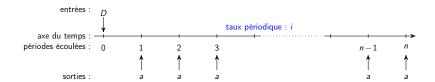
sorties .

Présentation du contexte - Formule des annuités fixes.

• Emprunt : D euros (à t = 0).

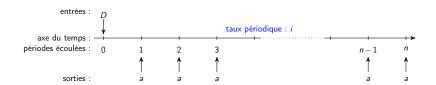
sorties .


- Emprunt : D euros (à t = 0).
- Annuités constantes : a euros.
- Annuités simples de fin de période.

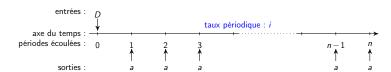

sorties .

Présentation du contexte - Formule des annuités fixes.

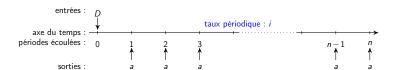
- Emprunt : D euros (à t = 0).
- Annuités constantes : a euros.
- Annuités simples de fin de période.



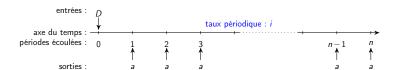
- Emprunt : D euros (à t = 0).
- Annuités constantes : a euros.
- Annuités simples de fin de période.
- *i* : taux d'intérêt **d'une période de remboursement**.



Présentation du contexte - Formule des annuités fixes.

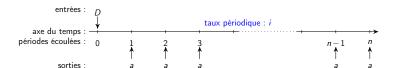

- Emprunt : D euros (à t = 0).
- Annuités constantes : a euros.
- Annuités simples de fin de période.
- *i* : taux d'intérêt **d'une période de remboursement**.

$$a = \frac{iD}{1 - (1+i)^{-n}}$$



$$D = a(1+i)^{-1} + a(1+i)^{-2} + \dots + a(1+i)^{-n}$$

$$D = a(1+i)^{-1} + a(1+i)^{-2} + \dots + a(1+i)^{-n}$$


$$D = a\left[\left((1+i)^{-1}\right)^{1} + \left((1+i)^{-1}\right)^{2} + \dots + \left((1+i)^{-1}\right)^{n}\right]$$

Rappel :
$$q+q^2+\cdots+q^n=q imes \frac{1-q^n}{1-q}$$
 pour $q\neq 1$.

$$D = a(1+i)^{-1} + a(1+i)^{-2} + \dots + a(1+i)^{-n}$$

$$D = a\left[\left((1+i)^{-1}\right)^{1} + \left((1+i)^{-1}\right)^{2} + \dots + \left((1+i)^{-1}\right)^{n}\right]$$

Rappel:
$$q + q^2 + \dots + q^n = q \times \frac{1-q^n}{1-q}$$
 pour $q \neq 1$.

$$D = a(1+i)^{-1} + a(1+i)^{-2} + \dots + a(1+i)^{-n}$$

$$D = a\left[\left((1+i)^{-1}\right)^{1} + \left((1+i)^{-1}\right)^{2} + \dots + \left((1+i)^{-1}\right)^{n}\right]$$

$$D = a(1+i)^{-1} \times \frac{1 - \left((1+i)^{-1}\right)^{n}}{1 - (1+i)^{-1}}$$

Rappel :
$$q+q^2+\cdots+q^n=q imes rac{1-q^n}{1-q}$$
 pour $q
eq 1$.

$$D = a(1+i)^{-1} + a(1+i)^{-2} + \dots + a(1+i)^{-n}$$

$$D = a \left[\left((1+i)^{-1} \right)^{1} + \left((1+i)^{-1} \right)^{2} + \dots + \left((1+i)^{-1} \right)^{n} \right]$$

$$D = a(1+i)^{-1} \times \frac{1 - \left((1+i)^{-1} \right)^{n}}{1 - (1+i)^{-1}}$$

$$D = a \times \frac{1}{(1+i)} \times \frac{1 - (1+i)^{-n}}{1 - (1+i)^{-1}}$$

Rappel :
$$q+q^2+\cdots+q^n=q imes rac{1-q^n}{1-q}$$
 pour $q
eq 1$.

$$D = a(1+i)^{-1} + a(1+i)^{-2} + \dots + a(1+i)^{-n}$$

$$D = a \left[\left((1+i)^{-1} \right)^{1} + \left((1+i)^{-1} \right)^{2} + \dots + \left((1+i)^{-1} \right)^{n} \right]$$

$$D = a(1+i)^{-1} \times \frac{1 - \left((1+i)^{-1} \right)^{n}}{1 - (1+i)^{-1}}$$

$$D = a \times \frac{1}{(1+i)} \times \frac{1 - (1+i)^{-n}}{1 - (1+i)^{-1}}$$

$$D = a \times \frac{1 - (1+i)^{-n}}{(1+i) - 1}$$

$$D = a \times \frac{1 - (1+i)^{-n}}{(1+i) - 1}$$

Rappel :
$$q+q^2+\cdots+q^n=q imes rac{1-q^n}{1-q}$$
 pour $q
eq 1$.

$$D = a(1+i)^{-1} + a(1+i)^{-2} + \dots + a(1+i)^{-n}$$

$$D = a \left[\left((1+i)^{-1} \right)^{1} + \left((1+i)^{-1} \right)^{2} + \dots + \left((1+i)^{-1} \right)^{n} \right]$$

$$D = a(1+i)^{-1} \times \frac{1 - \left((1+i)^{-1} \right)^{n}}{1 - (1+i)^{-1}}$$

$$D = a \times \frac{1}{(1+i)} \times \frac{1 - (1+i)^{-n}}{1 - (1+i)^{-1}}$$

$$D = a \times \frac{1 - (1+i)^{-n}}{(1+i) - 1}$$

$$D = a \times \frac{1 - (1+i)^{-n}}{i}$$

$$D = a \times \frac{1 - (1+i)^{-n}}{i}$$

Rappel :
$$q+q^2+\cdots+q^n=q imes rac{1-q^n}{1-q}$$
 pour $q
eq 1$.

$$D = a(1+i)^{-1} + a(1+i)^{-2} + \dots + a(1+i)^{-n}$$

$$D = a \left[\left((1+i)^{-1} \right)^{1} + \left((1+i)^{-1} \right)^{2} + \dots + \left((1+i)^{-1} \right)^{n} \right]$$

$$D = a(1+i)^{-1} \times \frac{1 - \left((1+i)^{-1} \right)^{n}}{1 - (1+i)^{-1}}$$

$$D = a \times \frac{1}{(1+i)} \times \frac{1 - (1+i)^{-n}}{1 - (1+i)^{-1}}$$

$$D = a \times \frac{1 - (1+i)^{-n}}{(1+i) - 1}$$

$$D = a \times \frac{1 - (1+i)^{-n}}{i}$$

$$D = a \times \frac{1 - (1+i)^{-n}}{i}$$

$$a = \frac{iD}{1 - (1 + i)^{-n}}$$

Attention:

taux annuel du prêt \neq taux périodique (généralement mensuel).

- En France, taux proportionnel : pour les crédits immobiliers et professionnels.
- En France, taux équivalent : pour les crédits à la consommation.
- A l'étranger : taux équivalent généralement utilisé.

Attention:

taux annuel du prêt \neq taux périodique (généralement mensuel).

- En France, taux proportionnel : pour les crédits immobiliers et professionnels.
- A l'étranger : taux équivalent généralement utilisé.

Attention:

taux annuel du prêt ≠ taux périodique (généralement mensuel).

- En France, taux proportionnel : pour les crédits immobiliers et professionnels.
- En France, taux équivalent : pour les crédits à la consommation.
- A l'étranger : taux équivalent généralement utilisé.

Attention:

taux annuel du prêt \(\neq \taux \) périodique (généralement mensuel).

- En France, taux proportionnel : pour les crédits immobiliers et professionnels.
- En France, taux équivalent : pour les crédits à la consommation.
- A l'étranger : taux équivalent généralement utilisé.

Exemple

Pour une maison, Mr *Mercers* emprunte 100 000 € remboursables en 15 ans, au taux nominal annuel de 5,1%. Calculer le montant m des mensualités et donner le coût du crédit.

Exemple

Définitions.

Pour une maison, Mr *Mercers* emprunte $100\,000 \in$ remboursables en 15 ans, au taux nominal annuel de 5,1%. Calculer le montant m des mensualités et donner le coût du crédit.

Valeur du taux mensuel i :

Exemple

Pour une maison, Mr Mercers emprunte 100 000 € remboursables en 15 ans, au taux nominal annuel de 5,1%. Calculer le montant m des mensualités et donner le coût du crédit.

Valeur du taux mensuel i : taux mensuel proportionnel (prêt immobilier).

Pour une maison, Mr *Mercers* emprunte $100\,000 \in$ remboursables en 15 ans, au taux nominal annuel de 5,1%. Calculer le montant m des mensualités et donner le coût du crédit.

Valeur du taux mensuel *i* : taux mensuel proportionnel (prêt immobilier).

$$i = \frac{5,1/100}{12} = 0,425\%$$
 soit $i = 0,00425$.

Pour une maison, Mr *Mercers* emprunte $100\,000 \in$ remboursables en 15 ans, au taux nominal annuel de 5,1%. Calculer le montant m des mensualités et donner le coût du crédit.

Valeur du taux mensuel i : taux mensuel proportionnel (prêt immobilier).

$$i = \frac{5,1/100}{12} = 0,425\%$$
 soit $i = 0,00425$.

Valeur de la mensualité m :

Exemple

Définitions.

Pour une maison, Mr Mercers emprunte 100 000 € remboursables en 15 ans, au taux nominal annuel de 5.1%. Calculer le montant m des mensualités et donner le coût du crédit.

Valeur du taux mensuel i : taux mensuel proportionnel (prêt immobilier).

$$i = \frac{5,1/100}{12} = 0,425\%$$
 soit $i = 0,00425$.

Valeur de la mensualité m: en 15 ans, il y a $15 \times 12 = 180$ mois.

Pour une maison, Mr *Mercers* emprunte $100\,000 \in$ remboursables en 15 ans, au taux nominal annuel de 5,1%. Calculer le montant m des mensualités et donner le coût du crédit.

Valeur du taux mensuel i : taux mensuel proportionnel (prêt immobilier).

$$i = \frac{5,1/100}{12} = 0,425\%$$
 soit $i = 0,00425$.

Valeur de la mensualité m: en 15 ans, il y a $15 \times 12 = 180$ mois.

$$m = \frac{100000 \times 0,00425}{1 - (1 + 0.00425)^{-180}} = 796,01$$
€.

Définitions.

Pour une maison, Mr Mercers emprunte 100 000€ remboursables en 15 ans, au taux nominal annuel de 5.1%. Calculer le montant m des mensualités et donner le coût du crédit.

Valeur du taux mensuel i : taux mensuel proportionnel (prêt immobilier).

$$i = \frac{5,1/100}{12} = 0,425\%$$
 soit $i = 0,00425$.

Valeur de la mensualité m: en 15 ans, il y a $15 \times 12 = 180$ mois.

$$m = \frac{100000 \times 0,00425}{1 - (1 + 0.00425)^{-180}} = 796,01 \in.$$

Coût du crédit :

Pour une maison, Mr *Mercers* emprunte $100\,000 \in$ remboursables en 15 ans, au taux nominal annuel de 5,1%. Calculer le montant m des mensualités et donner le coût du crédit.

Valeur du taux mensuel *i* : taux mensuel proportionnel (prêt immobilier).

$$i = \frac{5,1/100}{12} = 0,425\%$$
 soit $i = 0,00425$.

Valeur de la mensualité m: en 15 ans, il y a $15 \times 12 = 180$ mois.

$$m = \frac{100000 \times 0,00425}{1 - (1 + 0.00425)^{-180}} = 796,01 \in.$$

Coût du crédit :

$$180 \times 796,01 = 143281,80 \rightleftharpoons$$

Exemple

Pour une voiture de luxe, Mr Mercers emprunte $100\,000 \in \text{remboursables}$ en 15 ans, au taux effectif annuel de 5,1%. Calculer le montant m des mensualités et donner le coût du crédit.

Exemple

Pour une voiture de luxe, Mr Mercers emprunte $100\,000 \in$ remboursables en 15 ans, au taux effectif annuel de 5,1%. Calculer le montant m des mensualités et donner le coût du crédit.

Valeur du taux mensuel i :

Pour une voiture de luxe, Mr Mercers emprunte $100\,000 \in$ remboursables en 15 ans, au taux effectif annuel de 5,1%. Calculer le montant m des mensualités et donner le coût du crédit.

Valeur du taux mensuel i : taux mensuel équivalent (prêt à la consommation).

Exemple

Pour une voiture de luxe, Mr Mercers emprunte 100 000 € remboursables en 15 ans, au taux effectif annuel de 5.1%. Calculer le montant m des mensualités et donner le coût du crédit.

Valeur du taux mensuel i : taux mensuel équivalent (prêt à la consommation).

$$i = (1+0,051)^{1/12} - 1 \simeq 0,00415$$
 soit 0,415% (que l'on met en mémoire sans arrondir).

Exemple

Pour une voiture de luxe, Mr Mercers emprunte 100 000€ remboursables en 15 ans, au taux effectif annuel de 5.1%. Calculer le montant m des mensualités et donner le coût du crédit.

Valeur du taux mensuel i : taux mensuel équivalent (prêt à la consommation).

 $i = (1+0.051)^{1/12} - 1 \simeq 0.00415$ soit 0.415% (que l'on met en mémoire sans arrondir).

Valeur de la mensualité m :

Exemple

Définitions.

Pour une voiture de luxe, Mr Mercers emprunte 100 000€ remboursables en 15 ans, au taux effectif annuel de 5.1%. Calculer le montant m des mensualités et donner le coût du crédit.

Valeur du taux mensuel i : taux mensuel équivalent (prêt à la consommation).

 $i = (1+0.051)^{1/12} - 1 \simeq 0.00415$ soit 0.415% (que l'on met en mémoire sans arrondir).

Valeur de la mensualité m: en 15 ans, il y a $15 \times 12 = 180$ mois.

Définitions.

Pour une voiture de luxe, Mr Mercers emprunte $100\,000 \in$ remboursables en 15 ans, au taux effectif annuel de 5,1%. Calculer le montant m des mensualités et donner le coût du crédit.

Valeur du taux mensuel i : taux mensuel équivalent (prêt à la consommation).

$$i = (1+0.051)^{1/12} - 1 \simeq 0.00415$$
 soit 0.415% (que l'on met en mémoire sans arrondir).

Valeur de la mensualité m: en 15 ans, il y a $15 \times 12 = 180$ mois.

$$m = \frac{100000 \times i}{1 - (1 + i)^{-180}} = 789,99$$
€.

Pour une voiture de luxe, Mr Mercers emprunte $100\,000 \in$ remboursables en 15 ans, au taux effectif annuel de 5,1%. Calculer le montant m des mensualités et donner le coût du crédit.

Valeur du taux mensuel i : taux mensuel équivalent (prêt à la consommation).

$$i = (1+0.051)^{1/12} - 1 \simeq 0.00415$$
 soit 0.415% (que l'on met en mémoire sans arrondir).

Valeur de la mensualité m: en 15 ans, il y a $15 \times 12 = 180$ mois.

$$m = \frac{100000 \times i}{1 - (1 + i)^{-180}} = 789,99 =$$

Coût du crédit :

Exemple

Pour une voiture de luxe, Mr *Mercers* emprunte $100\,000 \in$ remboursables en 15 ans, au taux effectif annuel de 5,1%. Calculer le montant m des mensualités et donner le coût du crédit.

Valeur du taux mensuel i : taux mensuel équivalent (prêt à la consommation).

$$i = (1+0.051)^{1/12} - 1 \simeq 0.00415$$
 soit 0.415% (que l'on met en mémoire sans arrondir).

Valeur de la mensualité m: en 15 ans, il y a $15 \times 12 = 180$ mois.

$$m = \frac{100000 \times i}{1 - (1 + i)^{-180}} = 789,99$$
€.

Coût du crédit :

$$180 \times 789,99 = 142198,20$$

Définitions.

Pour une voiture de luxe, Mr Mercers emprunte 100 000€ remboursables en 15 ans, au taux effectif annuel de 5.1%. Calculer le montant m des mensualités et donner le coût du crédit.

Valeur du taux mensuel i : taux mensuel équivalent (prêt à la consommation).

$$i = (1+0,051)^{1/12} - 1 \simeq 0,00415$$
 soit 0,415% (que l'on met en mémoire sans arrondir).

Valeur de la mensualité m: en 15 ans, il y a $15 \times 12 = 180$ mois.

$$m = \frac{100000 \times i}{1 - (1 + i)^{-180}} = 789,99 =$$

Coût du crédit :

$$180 \times 789,99 = 142198,20$$

Commentaire : taux et montant emprunté s'enoncent de la même manière, mais les résultats iüt) sont différents.

Plan

- Définitions
 - Emprunt indivis annuité amortissement.
 - Annuité de fin de période.
- 2 Un exemple d'emprunt
 - Calcul de l'annuité.
 - Tableau d'amortissement.
 - Taux unique équivalent.
 - Taux actuariel effectif global (TAEG).
- Emprunt à annuités constantes.
 - Formule des annuités fixes.
 - Tableau d'amortissement.
 - Progression des amortissements.
 - Taux effectif global, taux actuariel effectif global (TEG TAEG).
- Emprunt à amortissements constants.
 - Formule des amortissments.
 - Tableau d'amortissement

ii it

Tableau d'amortissement (dates 1 et 2).

Définitions.

• Prêt immobilier de 100000€ au taux nominal annuel 5,1%.

	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1					

Tableau d'amortissement (dates 1 et 2).

Définitions.

• Prêt immobilier de 100 000€ au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1					
2					

	٠.	Δ.	ıl	· da	4	1																		
			ıa	·uc	itc										1									
													1											
													1											
													1											
													1											
													1											
													1											
													1											
													1											
													1											
													1											
													1											
													ł											
													ł											
													1											
													1											
													1											
													1											
													1											
													1									 		
													1											
								1		 				1	1	 1	1	1				 	 	
																							'n	űŧ

Tableau d'amortissement (dates 1 et 2).

• Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois			
1	D ₀ = 100000,00€							
2								

Définitions.

Dette : $D_0 = 100000$ €.

• Prêt immobilier de 100 000€ au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€			<i>I</i> ₁ = 425€	
2					

×0,00425

A la date 1 :

Définitions.

Dette : $D_0 = 1000000 = 0.0000$

Intérêt : $I_1 = 100000 \times 0,00425 = 425 €$.

• Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	<i>a</i> ₁ = 796,01€		<i>I</i> ₁ = 425€	
2					

A la date 1 :

Dette : $D_0 = 100000$ €.

Intérêt : $I_1 = 100000 \times 0,00425 = 425 €$.

Annuité : $a_1 = 796,01$ €.

Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 \le$	<i>I</i> ₁ = 425€	
2					

A la date 1 :

Dette : $D_0 = 100000$ €.

Interest: $I_1 = 100000 \times 0,00425 = 425 \in$.

Annuité : $a_1 = 796,01$ €.

Amortissement : $A_1 = 796,01 - 425 = 371,01 €$.

• Prêt immobilier de 100 000€ au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Întérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \le$	$a_1 = 796,01 $	A ₁ = 371,01€	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 $
2					

A la date 1 :

Dette : $D_0 = 100000$ €.

Intérêt : $I_1 = 100000 \times 0,00425 = 425 \in$.

Annuité : $a_1 = 796,01$ €.

Amortissement : $A_1 = 796,01 - 425 = 371,01$ €.

Reste dû: $D_1 = 100000 - 371,01 = 99628,99 \le$.

Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 \le$	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 =$
2					

• A la date 2 :

• <u>A la date 1</u> :

Dette : $D_0 = 100000$ €.

Interest: $I_1 = 100000 \times 0,00425 = 425 \in$.

Annuité : $a_1 = 796,01$ €.

Amortissement : $A_1 = 796,01 - 425 = 371,01$ €

Reste dû : $D_1 = 100000 - 371,01 = 99628,99 = 0.00000$

Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	a ₁ = 796,01€	A ₁ = 371,01€	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 $
2	$D_1 = 99628, 99 $				

A la date 1 :

Dette : $D_0 = 100000$ €.

Interêt: $I_1 = 100000 \times 0,00425 = 425 \in$.

Annuité : $a_1 = 796,01$ €.

Amortissement : $A_1 = 796,01 - 425 = 371,01$ €.

Reste dû : $D_1 = 100000 - 371,01 = 99628,99 = 0.00000$

• A la date 2 :

Dette : $D_1 = 99628, 99$ €.

ïüt≯

• Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 \le$	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 $
2	$D_1 = 99628, 99 $			<i>I</i> ₂ = 423, 42 €	

A la date 1 :

0,00425 -

• A la date 2 :

Dette : $D_1 = 99628, 99 €$.

Dette : $D_0 = 100000$ €.

Intérêt : $I_1 = 100000 \times 0.00425 = 425 \in$.

Annuité : $a_1 = 796,01$ €.

Amortissement : $A_1 = 796,01 - 425 = 371,01$ €

Reste dû: $D_1 = 100000 - 371,01 = 99628,99 \le$.

Interêt : $I_2 = 99628, 99 \times 0,00425 = 423,42 \le$

ïüt≯

Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 \le$	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 $
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€		<i>I</i> ₂ = 423, 42 €	

A la date 1 :

Dette : $D_0 = 1000000$ €.

Intérêt : $I_1 = 100000 \times 0,00425 = 425 €$.

Annuité : $a_1 = 796,01$ €.

Amortissement : $A_1 = 796,01 - 425 = 371,01 €$.

Reste dû: $D_1 = 100000 - 371,01 = 99628,99 \le$.

A la date 2 :

Dette : $D_1 = 99628, 99$ €.

Annuité : $a_2 = 796.01$ €.

Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	<i>a</i> ₁ = 796,01€	$A_1 = 371,01 $ €	<i>l</i> ₁ = 425€	$D_1 = 99628, 99 $
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	$A_2 = 372,59 =$	<i>I</i> ₂ = 423, 42 €	

A la date 1 :

Dette : $D_0 = 1000000$ €.

Intérêt : $I_1 = 100000 \times 0,00425 = 425 \in$

Annuité : $a_1 = 796,01$ €.

Amortissement : $A_1 = 796,01 - 425 = 371,01$ €.

Reste dû: $D_1 = 100000 - 371,01 = 99628,99 \le$.

• A la date 2 :

Dette : $D_1 = 99628, 99$ €.

Interest: $I_2 = 99628, 99 \times 0,00425 = 423,42 \le$.

Annuité : $a_2 = 796,01$ €.

Amortissement : $A_2 = 796,01 - 423,42 = 372,59$ €.

iüt

Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 $	<i>l</i> ₁ = 425€	D ₁ = 99628,99€
2	$D_1 = 99628, 99 =$	$a_2 = 796,01 \le$	$A_2 = 372,59 =$	<i>I</i> ₂ = 423,42€	D ₂ = 99 256, 40 €

A la date 1 :

Dette : $D_0 = 1000000$ €.

Intérêt : $I_1 = 100000 \times 0,00425 = 425 €$.

Annuité : $a_1 = 796,01$ €.

Amortissement : $A_1 = 796,01 - 425 = 371,01$ €.

Reste dû: $D_1 = 100000 - 371,01 = 99628,99 \le$.

• <u>A la date 2</u> :

Dette : $D_1 = 99628, 99$ €.

Interest: $I_2 = 99628, 99 \times 0,00425 = 423,42 \le$.

Annuité : $a_2 = 796,01$ €.

Amortissement : $A_2 = 796,01 - 423,42 = 372,59$ €.

Reste dû: $D_2 = 99628, 99 - 372, 59 = 99256, 40 \le$.

• Prêt immobilier de 100 000€ au taux nominal annuel 5,1%.

	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
4					

Définitions.

• A la date 3 :

• Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3					
4					

									1
									1
				~	 	 			
									1
									1
									1
									1
									1

• Prêt immobilier de 100 000€ au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	D ₂ = 99256,40€				
4					

Définitions.

Dette : $D_2 = 99256, 40 €$.

• Prêt immobilier de 100 000€ au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	D ₂ = 99256,40€			<i>I</i> ₃ = 421,84€	
4					

 \times 0,00425

A la date 3 :

Dette : $D_2 = 99256, 40$ €.

Interest: $I_3 = 99256, 40 \times 0,00425 = 421,84 \in$.

Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	D ₂ = 99256, 40€	<i>a</i> ₃ = 796,01€		<i>I</i> ₃ = 421,84€	
4					

• A la date 3 :

Dette : $D_2 = 99256, 40 €$.

Interest: $I_3 = 99256, 40 \times 0,00425 = 421,84 \le$.

Annuité : $a_3 = 796,01$ €.

Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	D ₂ = 99256,40€	<i>a</i> ₃ = 796,01€	A ₃ = 374, 17€	<i>I</i> ₃ = 421,84€	
4					

A la date 3 :

Définitions.

Dette : $D_2 = 99256, 40 €$.

Interest: $I_3 = 99256, 40 \times 0,00425 = 421,84 \in$.

Annuité : $a_3 = 796.01$ €.

Amortissement : $A_3 = 796,01 - 421,84 = 374,17 €$.

• Prêt immobilier de 100 000€ au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Întérêt	Capital dû en fin de mois
3	D ₂ = 99256, 40€	<i>a</i> ₃ = 796,01€	A ₃ = 374, 17€	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4					

A la date 3 :

Dette : $D_2 = 99256, 40 €$.

Interêt : $I_3 = 99256, 40 \times 0,00425 = 421,84 \in$.

Annuité : $a_3 = 796,01$ €.

Amortissement : $A_3 = 796,01 - 421,84 = 374,17$ €.

Reste dû: $D_3 = 99256, 40 - 374, 17 = 98882, 23 \le$.

• Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	$D_2 = 99256, 40 \le$	<i>a</i> ₃ = 796,01€	A ₃ = 374, 17€	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4					

A la date 4 :

A la date 3 :

Dette : $D_2 = 99256, 40 €$.

Interest: $I_3 = 99256, 40 \times 0,00425 = 421,84 \in$.

Annuité : $a_3 = 796,01$ €.

Amortissement : $A_3 = 796,01 - 421,84 = 374,17$ €.

Reste dû: $D_3 = 99256, 40 - 374, 17 = 98882, 23 \le$.

• Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	$D_2 = 99256, 40 \le$	a ₃ = 796,01€	A ₃ = 374, 17€	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4	D ₃ = 98882,23€				

A la date 3 :

• A la date 4 :

Dette : $D_3 = 98882, 23$ €.

Dette : $D_2 = 99256, 40 €$.

Interêt: $I_3 = 99256, 40 \times 0,00425 = 421,84 \in$.

Annuité : $a_3 = 796,01$ €.

Amortissement : $A_3 = 796,01 - 421,84 = 374,17$ €.

Reste dû: $D_3 = 99256, 40 - 374, 17 = 98882, 23 \le$.

iüt

Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	D ₂ = 99256,40€	<i>a</i> ₃ = 796,01€	A ₃ = 374, 17€	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4	D ₃ = 98882,23€			<i>I</i> ₄ = 420, 25€	

A la date 3 :

A la date 4 :

Dette : $D_3 = 98882, 23$ €.

Dette : $D_2 = 99256, 40 €$.

Interêt : $I_3 = 99256, 40 \times 0,00425 = 421,84 \le$.

Annuité : $a_3 = 796.01$ €.

Amortissement : $A_3 = 796,01 - 421,84 = 374,17 €$.

Reste dû : $D_3 = 99256, 40 - 374, 17 = 98882, 23 €$.

Interest: $I_4 = 98882, 23 \times 0,00425 = 420, 25 \in$.

iüt)

• Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	D ₂ = 99256,40€	<i>a</i> ₃ = 796,01€	A ₃ = 374, 17€	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4	D ₃ = 98882,23€	<i>a</i> ₄ = 796,01€		<i>I</i> ₄ = 420, 25€	

A la date 3 :

Dette : $D_2 = 99256, 40 €$.

Interest: $I_3 = 99256, 40 \times 0,00425 = 421,84 \le$.

Annuité : $a_3 = 796,01$ €.

Amortissement : $A_3 = 796,01 - 421,84 = 374,17$ €.

Reste dû: $D_3 = 99256, 40 - 374, 17 = 98882, 23 \le$.

• <u>A la date 4</u> :

Dette : $D_3 = 98882, 23$ €.

Interest: $I_4 = 98882, 23 \times 0,00425 = 420, 25 = 420$

Annuité : $a_4 = 796.01$ €.

• Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	$D_2 = 99256, 40 \le$	<i>a</i> ₃ = 796,01€	A ₃ = 374, 17 €	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4	D ₃ = 98882,23€	<i>a</i> ₄ = 796,01€	<i>A</i> ₄ = 375,76€	<i>I</i> ₄ = 420,25€	

A la date 3 :

Dette : $D_2 = 99256, 40 €$.

Interest: $I_3 = 99256, 40 \times 0,00425 = 421,84 \in$.

Annuité : $a_3 = 796,01$ €.

Amortissement : $A_3 = 796,01 - 421,84 = 374,17 €$.

Reste dû : $D_3 = 99256, 40 - 374, 17 = 98882, 23 \le$.

• <u>A la date 4</u> :

Dette : $D_3 = 98882, 23$ €.

Interest: $I_4 = 98882, 23 \times 0,00425 = 420, 25 = 420$

Annuité : $a_4 = 796,01$ €.

Amortissement : $A_4 = 796,01 - 420,25 = 375,76$ €.

iüt

Prêt immobilier de 100 000 € au taux nominal annuel 5,1%.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	D ₂ = 99256,40€	<i>a</i> ₃ = 796,01€	A ₃ = 374, 17 €	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4	D ₃ = 98882,23€	<i>a</i> ₄ = 796,01€	A ₄ = 375,76€	<i>I</i> ₄ = 420,25€	D ₄ = 98506,47€

A la date 3 :

Dette: $D_2 = 99256.40 \le$.

Interest: $I_3 = 99256, 40 \times 0,00425 = 421,84 \le$.

Annuité : $a_3 = 796.01$ €.

Amortissement : $A_3 = 796,01 - 421,84 = 374,17$ €

Reste dû: $D_3 = 99256, 40 - 374, 17 = 98882, 23 \le$.

A la date 4 :

Dette : $D_3 = 98882, 23$ €.

Intérêt : $I_4 = 98882, 23 \times 0,00425 = 420, 25 \in$

Annuité : $a_4 = 796.01$ €.

Amortissement : $A_4 = 796,01 - 420,25 = 375,76$ €.

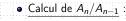
Reste dû: $D_4 = 98882, 23 - 375, 76 = 98506, 47 \le$.

Plan

- Définitions
 - Emprunt indivis annuité amortissement.
 - Annuité de fin de période.
- 2 Un exemple d'emprunt
 - Calcul de l'annuité.
 - Tableau d'amortissement.
 - Taux unique équivalent.
 - Taux actuariel effectif global (TAEG).
- 3 Emprunt à annuités constantes.
 - Formule des annuités fixes.
 - Tableau d'amortissement.
 - Progression des amortissements.
 - Taux effectif global, taux actuariel effectif global (TEG TAEG).
- 4 Emprunt à amortissements constants.
 - Formule des amortissments.
 - Tableau d'amortissement

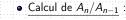
ii it

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 \le$	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 \le$
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	$A_2 = 372,59 $ €	<i>I</i> ₂ = 423,42€	$D_2 = 99256, 40 $
3	D ₂ = 99256,40€	<i>a</i> ₃ = 796,01€	A ₃ = 374,17€	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4	D ₃ = 98882,23€	<i>a</i> ₄ = 796,01€	<i>A</i> ₄ = 375,76€	<i>I</i> ₄ = 420,25€	D ₄ = 98506,47€



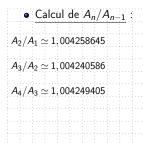
Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \le$	<i>a</i> ₁ = 796,01€	$A_1 = 371,01 \le$	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 $
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	$A_2 = 372,59 $ €	<i>I</i> ₂ = 423,42€	$D_2 = 99256, 40 $
3	$D_2 = 99256, 40 $	<i>a</i> ₃ = 796,01€	A ₃ = 374,17€	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4	$D_3 = 98882, 23 $	<i>a</i> ₄ = 796,01€	<i>A</i> ₄ = 375,76€	<i>I</i> ₄ = 420,25€	D ₄ = 98506,47€

• Calcul de A_n/A_{n-1} :


Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \le$	a ₁ = 796,01€	$A_1 = 371,01 \le$	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 $
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	$A_2 = 372,59 $ €	<i>I</i> ₂ = 423,42€	D ₂ = 99 256, 40 €
3	$D_2 = 99256, 40 $	<i>a</i> ₃ = 796,01€	A ₃ = 374,17€	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4	$D_3 = 98882, 23 $	<i>a</i> ₄ = 796,01€	<i>A</i> ₄ = 375,76€	<i>I</i> ₄ = 420,25€	D ₄ = 98506,47€

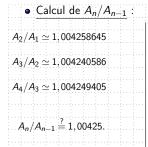
 $A_2/A_1 \simeq 1,004258645$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 \le$	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 \le$
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	$A_2 = 372,59 $ €	<i>I</i> ₂ = 423,42€	$D_2 = 99256, 40 $
3	D ₂ = 99256,40€	<i>a</i> ₃ = 796,01€	A ₃ = 374,17€	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4	D ₃ = 98882,23€	<i>a</i> ₄ = 796,01€	<i>A</i> ₄ = 375,76€	<i>I</i> ₄ = 420,25€	D ₄ = 98506,47€

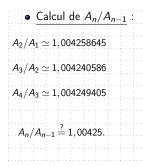


$$A_2/A_1 \simeq 1,004258645$$

$$A_3/A_2 \simeq 1,004240586$$

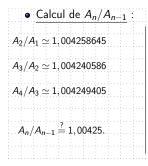

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 \le$	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 =$
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	$A_2 = 372,59 $ €	<i>I</i> ₂ = 423,42€	$D_2 = 99256, 40 $
3	$D_2 = 99256, 40 $	<i>a</i> ₃ = 796,01€	A ₃ = 374,17€	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4	D ₃ = 98882,23€	<i>a</i> ₄ = 796,01€	<i>A</i> ₄ = 375,76€	<i>I</i> ₄ = 420,25€	<i>D</i> ₄ = 98506,47€

iüt


Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 \le$	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 =$
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	$A_2 = 372,59 $ €	<i>I</i> ₂ = 423,42€	$D_2 = 99256, 40 $
3	D ₂ = 99256,40€	<i>a</i> ₃ = 796,01€	A ₃ = 374,17€	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4	D ₃ = 98882,23€	<i>a</i> ₄ = 796,01€	A ₄ = 375,76€	<i>I</i> ₄ = 420,25€	D ₄ = 98506,47€

Définitions.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	<i>a</i> ₁ = 796,01€	$A_1 = 371,01 \le$	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 =$
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	$A_2 = 372,59 $ €	<i>I</i> ₂ = 423,42€	$D_2 = 99256, 40 $
3	$D_2 = 99256, 40 $	<i>a</i> ₃ = 796,01€	A ₃ = 374,17€	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4	D ₃ = 98882,23€	<i>a</i> ₄ = 796,01€	<i>A</i> ₄ = 375,76€	<i>I</i> ₄ = 420,25€	<i>D</i> ₄ = 98506,47€


• Expression de A_2 en fonction de A_1 :

iüt)

 $A_2 = a - l_2$

Progression des amortissements.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 \le$	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 =$
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	$A_2 = 372,59 $ €	<i>I</i> ₂ = 423,42€	$D_2 = 99256, 40 =$
3	D ₂ = 99256,40€	<i>a</i> ₃ = 796,01€	A ₃ = 374,17€	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4	D ₃ = 98882,23€	<i>a</i> ₄ = 796,01€	A ₄ = 375,76€	<i>I</i> ₄ = 420,25€	<i>D</i> ₄ = 98506,47€

• Expression de A_2 en fonction de A_1 :

iüt

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 \le$	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 =$
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	$A_2 = 372,59 $ €	<i>I</i> ₂ = 423,42€	$D_2 = 99256, 40 $
3	D ₂ = 99256,40€	<i>a</i> ₃ = 796,01€	A ₃ = 374,17€	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4	D ₃ = 98882,23€	<i>a</i> ₄ = 796,01€	A ₄ = 375,76€	<i>I</i> ₄ = 420,25€	D ₄ = 98506,47€

 $A_2/A_1 \simeq 1,004258645$

• Calcul de A_n/A_{n-1} :

 $A_3/A_2 \simeq 1,004240586$

 $A_4/A_3 \simeq 1,004249405$

 $A_n/A_{n-1} \stackrel{?}{=} 1.00425.$

• Expression de A_2 en fonction de A_1 :

$$A_2 = a - I_2 = a - i \times D_1$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 \le$	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 =$
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	$A_2 = 372,59 $ €	<i>I</i> ₂ = 423,42€	$D_2 = 99256, 40 =$
3	D ₂ = 99256,40€	<i>a</i> ₃ = 796,01€	A ₃ = 374,17€	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4	D ₃ = 98882,23€	<i>a</i> ₄ = 796,01€	A ₄ = 375,76€	<i>I</i> ₄ = 420,25€	<i>D</i> ₄ = 98506,47€

 $A_2/A_1 \simeq 1,004258645$

• Calcul de A_n/A_{n-1} :

Définitions.

$$A_3/A_2 \simeq 1,004240586$$

 $A_4/A_3 \simeq 1,004249405$

$$A_n/A_{n-1} \stackrel{?}{=} 1,00425.$$

• Expression de A_2 en fonction de A_1 :

$$A_2 = a - l_2 = a - i \times D_1 = a - i(D - A_1)$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 \le$	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 =$
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	$A_2 = 372,59 $ €	<i>I</i> ₂ = 423,42€	$D_2 = 99256, 40 $
3	D ₂ = 99256,40€	<i>a</i> ₃ = 796,01€	A ₃ = 374,17€	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4	D ₃ = 98882,23€	<i>a</i> ₄ = 796,01€	A ₄ = 375,76€	<i>I</i> ₄ = 420,25€	D ₄ = 98506,47€

 $A_2/A_1 \simeq 1,004258645$

• Calcul de A_n/A_{n-1} :

$$A_3/A_2 \simeq 1,004240586$$

$$A_4/A_3 \simeq 1,004249405$$

$$A_n/A_{n-1} \stackrel{?}{=} 1,00425.$$

• Expression de A₂ en fonction de A₁ :

$$A_2 = a - I_2 = a - i \times D_1 = a - i (D - A_1)$$

$$A_2 = a - i \times D + i \times A_1$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 \le$	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 =$
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	$A_2 = 372,59 $ €	<i>I</i> ₂ = 423,42€	$D_2 = 99256, 40 =$
3	D ₂ = 99256,40€	<i>a</i> ₃ = 796,01€	A ₃ = 374,17€	<i>I</i> ₃ = 421,84€	D ₃ = 98882,23€
4	D ₃ = 98882,23€	<i>a</i> ₄ = 796,01€	A ₄ = 375,76€	<i>I</i> ₄ = 420,25€	<i>D</i> ₄ = 98506,47€

 $A_2/A_1 \simeq 1,004258645$

• Calcul de A_n/A_{n-1} :

$$A_3/A_2 \simeq 1,004240586$$

$$A_4/A_3 \simeq 1,004249405$$

$$A_n/A_{n-1} \stackrel{?}{=} 1,00425.$$

• Expression de A_2 en fonction de A_1 :

$$A_2 = a - l_2 = a - i \times D_1 = a - i (D - A_1)$$

$$A_2 = a - i \times D + i \times A_1 = A_1 + i \times A_1$$

iüt

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 \le$	<i>I</i> ₁ = 425€	$D_1 = 99628, 99 =$
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	$A_2 = 372,59 $ €	<i>I</i> ₂ = 423,42€	$D_2 = 99256, 40 $
3	$D_2 = 99256, 40 \le$	a ₃ = 796,01€	A ₃ = 374,17€	<i>I</i> ₃ = 421,84€	$D_3 = 98882, 23 $
4	D ₃ = 98882,23€	<i>a</i> ₄ = 796,01€	<i>A</i> ₄ = 375,76€	<i>I</i> ₄ = 420,25€	D ₄ = 98506,47€

$A_2/A_1 \simeq 1,004258645$
$A_3/A_2 \simeq 1,004240586$
$A_4/A_3 \simeq 1,004249405$
A /A - 1 00425

• Calcul de A_n/A_{n-1} :

$$A_2 = a - l_2 = a - i \times D_1 = a - i (D - A_1)$$

$$A_2 = a - i \times D + i \times A_1 = A_1 + i \times A_1$$

$$A_2 = (1+i)A_1.$$

Date	Capital dû en début de mois	1 Mancualità Δmorticcament Intárât						
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 \in \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	(1) A	$D_1 = 99628, 99 $			
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	$A_2 = 372,59 \in \checkmark$	$I_2 = 423,42 \in$	$D_2 = 99256, 40 $			
3	$D_2 = 99256, 40 \le$	a ₃ = 796,01€	A ₃ = 374,17€	<i>I</i> ₃ = 421,84€	$D_3 = 98882, 23 $			
4	$D_3 = 98882, 23 $	<i>a</i> ₄ = 796,01€	<i>A</i> ₄ = 375,76€	<i>I</i> ₄ = 420,25€	<i>D</i> ₄ = 98506,47€			

• Calcul de A_n/A_{n-1}
$A_2/A_1 \simeq 1,004258645$
$A_3/A_2 \simeq 1,004240586$
$A_4/A_3 \simeq 1,004249405$
$A_n/A_{n-1} \stackrel{?}{=} 1,00425.$

$$A_2 = a - l_2 = a - i \times D_1 = a - i (D - A_1)$$

$$A_2 = a - i \times D + i \times A_1 = A_1 + i \times A_1$$

$$A_2 = (1+i)A_1.$$

Date	Capital dû en début de mois	Mensualité	Intérêt	Capital dû en fin de mois				
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 \in \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	11 (4 1 1) N	$D_1 = 99628, 99 =$			
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	A ₂ = 372,59€ ≺		$D_2 = 99256, 40 $			
3	$D_2 = 99256, 40 \le$	a ₃ = 796,01€	A ₃ = 374,17€ ✓	$l_3^{\times (1+i)} = 421,84 \in$	D ₃ = 98882,23€			
4	D ₃ = 98882,23€	<i>a</i> ₄ = 796,01€	<i>A</i> ₄ = 375,76€	<i>I</i> ₄ = 420,25€	D ₄ = 98506,47€			

• Calcul de A_n/A_{n-}
$A_2/A_1 \simeq 1,004258645$
$A_3/A_2 \simeq 1,004240586$
$A_4/A_3 \simeq 1,004249405$
7 1 00405
$A_n/A_{n-1} \stackrel{?}{=} 1,00425.$

$$A_2 = a - l_2 = a - i \times D_1 = a - i (D - A_1)$$

$$A_2 = a - i \times D + i \times A_1 = A_1 + i \times A_1$$

$$A_2 = (1+i)A_1.$$

Date	Capital dû en début de mois	Mensualité	Capital dû en fin de mois		
1	D ₀ = 100000,00€	a ₁ = 796,01€	$A_1 = 371,01 \in \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	(1) A	$D_1 = 99628, 99 $
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	A ₂ = 372,59€ ≺		$D_2 = 99256, 40 $
3	$D_2 = 99256, 40 $	a ₃ = 796,01€	<i>A</i> ₃ = 374,17€ ≺	$\int_{1}^{\infty} \int_{1}^{1+\eta} = 421,84 \in$	$D_3 = 98882, 23 $
4	D ₃ = 98882,23€	<i>a</i> ₄ = 796,01€	A ₄ = 375,76€ ≺	$I_4^{\times (1+i)} \overline{420,25} \in$	<i>D</i> ₄ = 98506,47€

Calcul de A_n/A_{n-1}
$A_2/A_1 \simeq 1,004258645$
$A_3/A_2 \simeq 1,004240586$
$A_4/A_3 \simeq 1,004249405$
$A_n/A_{n-1} \stackrel{?}{=} 1,00425.$
$A_n/A_{n-1}=1,00425.$

- Coloul do A /A

$$A_2 = a - l_2 = a - i \times D_1 = a - i (D - A_1)$$

$$A_2 = a - i \times D + i \times A_1 = A_1 + i \times A_1$$

$$A_2 = (1+i)A_1.$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	<i>a</i> ₁ = 796,01€	$A_1 = 371,01 \in \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	(1) (A)	$D_1 = 99628, 99 $
2	$D_1 = 99628, 99 $	<i>a</i> ₂ = 796,01€	A ₂ = 372,59€ ≺	√(1 + Δ) '	$D_2 = 99256, 40 \le$
3	D ₂ = 99256,40€	<i>a</i> ₃ = 796,01€	1 7 /	/1 : A	D ₃ = 98882,23€
4	D ₃ = 98882,23€	<i>a</i> ₄ = 796,01€	A ₄ = 375,76€ ✓	$I_4 = 420,25 \in$	<i>D</i> ₄ = 98506,47€

• Calcul de A_n/A_{n-1} :

• Expression de A_2 en fonction de A_1 :

Théorème

La suite des amortissements est géométrique de raison (1+i).

$$A_n = A_1 (1+i)^{n-1}$$
.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois				
60	$D_{59} =$	a ₆₀ =	A ₆₀ =	I ₆₀ =	D ₆₀ =				

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois				
60	$D_{59} =$	a ₆₀ =	A ₆₀ =	I ₆₀ =	$D_{60} =$				

a	: A	۱la	ida	ate	60) :															
						:-			 			 	 		 						

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	$D_{59} =$	a ₆₀ =	$A_{60} =$	I ₆₀ =	$D_{60} =$

A la date 60 :

$$A_{60} = A_1 \left(1 + i \right)^{59}$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ =	a ₆₀ =	A ₆₀ =	I ₆₀ =	$D_{60} =$

$$A_{60} = A_1 (1+i)^{59} = 371,01 (1+0,00425)^{59}$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ =	a ₆₀ =	A ₆₀ = 476,49€	I ₆₀ =	$D_{60} =$

$$A_{60} = A_1 (1+i)^{59} = 371,01 (1+0,00425)^{59} = 476,49 \in.$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	$D_{59} =$	<i>a</i> ₆₀ = 796,01€	A ₆₀ = 476,49€	I ₆₀ =	$D_{60} =$

$$A_{60} = A_1 (1+i)^{59} = 371,01 (1+0,00425)^{59} = 476,49$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ =	$a_{60} = 796,01 $	$A_{60} = 476,49 $	I ₆₀ =	D ₆₀ =

• A la date 60 :

$$A_{60} = A_1 (1+i)^{59} = 371,01 (1+0,00425)^{59} = 476,49$$

$$I_{60} + A_{60} = a_{60}$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ =	<i>a</i> ₆₀ = 796,01€	A ₆₀ = 476,49€	I ₆₀ =	$D_{60} =$

$$A_{60} = A_1 (1+i)^{59} = 371,01 (1+0,00425)^{59} = 476,49$$

$$I_{60} + A_{60} = a_{60}$$
 donc $I_{60} = a_{60} - A_{60}$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ =	<i>a</i> ₆₀ = 796,01€	A ₆₀ = 476,49€	I ₆₀ =	D ₆₀ =

• A la date 60 :

$$A_{60} = A_1 (1+i)^{59} = 371.01 (1+0.00425)^{59} = 476.49 \le.$$

$$I_{60} + A_{60} = a_{60} \text{ donc } I_{60} = a_{60} - A_{60} = 796,01 - 476,49$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ =	$a_{60} = 796,01 $	$A_{60} = 476,49 $	<i>I</i> ₆₀ = 319,52€	D ₆₀ =

$$A_{60} = A_1 (1+i)^{59} = 371.01 (1+0.00425)^{59} = 476.49 \le.$$

$$I_{60} + A_{60} = a_{60}$$
 donc $I_{60} = a_{60} - A_{60} = 796,01 - 476,49 = 319,52$ €.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ =	$a_{60} = 796,01 $	$A_{60} = 476,49 =$	<i>I</i> ₆₀ = 319,52€	$D_{60} =$

$$A_{60} = A_1 (1+i)^{59} = 371.01 (1+0.00425)^{59} = 476.49 \le.$$

$$I_{60} + A_{60} = a_{60}$$
 donc $I_{60} = a_{60} + A_{60} = 796,01 - 476,49 = 319,52 \le$.

$$I_{60} = D_{59} \times i$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ =	<i>a</i> ₆₀ = 796,01€	A ₆₀ = 476,49€	<i>I</i> ₆₀ = 319,52€	D ₆₀ =

A la date 60 :

$$A_{60} = A_1 (1+i)^{59} = 371.01 (1+0.00425)^{59} = 476.49 \le.$$

$$I_{60} + A_{60} = a_{60}$$
 donc $I_{60} = a_{60} + A_{60} = 796,01 - 476,49 = 319,52 ext{ } ext{.}$

$$I_{60} = D_{59} \times i$$
 et $I_{60} = a_{60} - A_{60}$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ =	<i>a</i> ₆₀ = 796,01€	A ₆₀ = 476,49€	<i>I</i> ₆₀ = 319,52€	D ₆₀ =

A la date 60 :

$$A_{60} = A_1 (1+i)^{59} = 371,01 (1+0,00425)^{59} = 476,49 \in$$

$$I_{60} + A_{60} = a_{60}$$
 donc $I_{60} = a_{60} + A_{60} = 796,01 - 476,49 = 319,52 \stackrel{\frown}{=} .$

$$I_{60} = D_{59} \times i$$
 et $I_{60} = a_{60} - A_{60}$ donc $D_{59} \times i = a_{60} - A_{60}$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	$D_{59} =$	<i>a</i> ₆₀ = 796,01€	$A_{60} = 476,49 $	<i>I</i> ₆₀ = 319,52€	$D_{60} =$

A la date 60 :

$$A_{60} = A_1 (1+i)^{59} = 371,01 (1+0,00425)^{59} = 476,49$$

$$I_{60} + A_{60} = a_{60}$$
 donc $I_{60} = a_{60} + A_{60} = 796,01 - 476,49 = 319,52 \le$.

$$I_{60} = D_{59} \times i$$
 et $I_{60} = a_{60} - A_{60}$ donc $D_{59} \times i = a_{60} - A_{60}$

$$D_{59} = \frac{a_{60} - A_{60}}{i}$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ =	<i>a</i> ₆₀ = 796,01€	$A_{60} = 476,49 =$	<i>I</i> ₆₀ = 319,52€	$D_{60} =$

A la date 60 :

$$A_{60} = A_1 (1+i)^{59} = 371,01 (1+0,00425)^{59} = 476,49 \in.$$

$$I_{60} + A_{60} = a_{60}$$
 donc $I_{60} = a_{60} + A_{60} = 796,01 - 476,49 = 319,52 \in$.

$$I_{60} = D_{59} \times i$$
 et $I_{60} = a_{60} - A_{60}$ donc $D_{59} \times i = a_{60} - A_{60}$

$$D_{59} = \frac{a_{60} - A_{60}}{i} = \frac{796,01 - 371,01(1 + 0.00425)^{59}}{0.00425}$$

NE PAS utiliser la valeur approchée de A₆₀.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ = 75181,07€	<i>a</i> ₆₀ = 796,01€	A ₆₀ = 476,49€	<i>I</i> ₆₀ = 319,52€	$D_{60} =$

$$A_{60} = A_1 (1+i)^{59} = 371,01 (1+0,00425)^{59} = 476,49 \in$$

$$I_{60} + A_{60} = a_{60}$$
 donc $I_{60} = a_{60} + A_{60} = 796,01 - 476,49 = 319,52 \in$.

$$I_{60} = D_{59} \times i$$
 et $I_{60} = a_{60} - A_{60}$ donc $D_{59} \times i = a_{60} - A_{60}$

$$D_{59} = \frac{a_{60} - A_{60}}{i} = \frac{796,01 - 371,01(1 + 0,00425)^{59}}{0,00425} = 75181,07$$

NE PAS utiliser la valeur approchée de A₆₀.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	$D_{59} = 75181,07 \le$	$a_{60} = 796,01 $	$A_{60} = 476,49 =$	<i>I</i> ₆₀ = 319,52€	$D_{60} =$

$$A_{60} = A_1 (1+i)^{59} = 371,01 (1+0,00425)^{59} = 476,49 \in.$$

$$I_{60} + A_{60} = a_{60}$$
 donc $I_{60} = a_{60} + A_{60} = 796,01 - 476,49 = 319,52 \in$.

$$I_{60} = D_{59} \times i$$
 et $I_{60} = a_{60} - A_{60}$ donc $D_{59} \times i = a_{60} - A_{60}$

$$D_{59} = \tfrac{a_{60} - A_{60}}{i} = \tfrac{796,01 - 371,01(1 + 0.00425)^{59}}{0.00425} = 75\,181,07 \\ \Longleftrightarrow \text{NE PAS utiliser la valeur approchée de } A_{60}.$$

$$D_{60} = D_{59} - A_{60}$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ = 75181,07€	<i>a</i> ₆₀ = 796,01€	A ₆₀ = 476,49€	<i>I</i> ₆₀ = 319,52€	$D_{60} =$

A la date 60 :

$$A_{60} = A_1 (1+i)^{59} = 371,01 (1+0,00425)^{59} = 476,49 \in.$$

$$I_{60} + A_{60} = a_{60}$$
 donc $I_{60} = a_{60} + A_{60} = 796,01 - 476,49 = 319,52 \in$.

$$I_{60} = D_{59} \times i$$
 et $I_{60} = a_{60} - A_{60}$ donc $D_{59} \times i = a_{60} - A_{60}$

$$D_{59} = \tfrac{a_{60} - A_{60}}{i} = \tfrac{796,01 - 371,01(1 + 0.00425)^{59}}{0.00425} = 75\,181,07 \\ \bigstar \qquad \text{NE PAS utiliser la valeur approchée de } A_{60}.$$

$$D_{60} = D_{59} - A_{60} = 75181,07 - 476,49$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ = 75181,07€	<i>a</i> ₆₀ = 796,01€	A ₆₀ = 476,49€	<i>I</i> ₆₀ = 319,52€	D ₆₀ = 74704,58€

• A la date 60 :

$$A_{60} = A_1 (1+i)^{59} = 371,01 (1+0,00425)^{59} = 476,49$$

$$I_{60} = D_{59} \times i$$
 et $I_{60} = a_{60} - A_{60}$ donc $D_{59} \times i = a_{60} - A_{60}$

$$D_{59} = \frac{a_{60} - A_{60}}{i} = \frac{796,01 - 371,01(1 + 0.00425)^{59}}{0.00425} = 75181,07 \leqslant$$

NE PAS utiliser la valeur approchée de A₆₀.

$$D_{60} = D_{59} - A_{60} = 75181,07 - 476,49 = 74704,58 \le$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} =$	a ₁₈₀ =	$A_{180} =$	I ₁₈₀ =	$D_{180} =$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} =$	a ₁₈₀ =	$A_{180} =$	I ₁₈₀ =	$D_{180} =$

		٨	11.	1.1	- 1		10	0															
: 0) :	А	ıа	∵a.	аτ	e:	ΙÖ	U															
						_	==		 		 				 	 	 				 		
2											 					 							
:									 							 							
										1													
	- 1																						

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} =$	$a_{180} =$	$A_{180} =$	I ₁₈₀ =	$D_{180} =$

$$A_{180} = A_1 (1+i)^{179}$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} =$	$a_{180} =$	A ₁₈₀ =	I ₁₈₀ =	$D_{180} =$

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179}$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} =$	$a_{180} =$	= A ₁₈₀ = 792,64€ I ₁₈₀ =		$D_{180} =$

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \le.$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} =$	$a_{180} = 796,01 \le$	$A_{180} = 792,64 \le$	I ₁₈₀ =	$D_{180} =$

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in.$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} =$	$a_{180} = 796,01 \le$	A ₁₈₀ = 792,64€	I ₁₈₀ =	$D_{180} =$

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in.$$

$$I_{180} + A_{180} = a_{180}$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} =$	$a_{180} = 796,01 \le$	A ₁₈₀ = 792,64€	I ₁₈₀ =	$D_{180} =$

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in$$

$$I_{180} + A_{180} = a_{180} \text{ donc } I_{180} = a_{180} - A_{180}$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} =$	$a_{180} = 796,01 $	$A_{180} = 792,64 \le$	I ₁₈₀ =	$D_{180} =$

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in$$

$$I_{180} + A_{180} = a_{180}$$
 donc $I_{180} = a_{180} - A_{180} = 796,01 - 792,64$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} =$	$a_{180} = 796,01 $	$A_{180} = 792,64 \le$	<i>I</i> ₁₈₀ = 3,37€	$D_{180} =$

A la date 180 :

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in$$

$$I_{180} + A_{180} = a_{180} \text{ donc } I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37 \in$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} =$	$a_{180} = 796,01 \le$	A ₁₈₀ = 792,64€	<i>I</i> ₁₈₀ = 3,37€	$D_{180} =$

A la date 180 :

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in$$

$$I_{180} + A_{180} = a_{180} \text{ donc } I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37$$
€.

$$I_{180} = D_{179} \times i$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} =$	$a_{180} = 796,01 \le$	A ₁₈₀ = 792,64€	<i>I</i> ₁₈₀ = 3,37€	$D_{180} =$

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in$$

$$I_{180} + A_{180} = a_{180}$$
 donc $I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37$ €.

$$I_{180} = D_{179} \times i$$
 et $I_{180} = a_{180} - A_{180}$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} =$	$a_{180} = 796,01 \le$	A ₁₈₀ = 792,64€	<i>I</i> ₁₈₀ = 3,37€	$D_{180} =$

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in.$$

$$I_{180} + A_{180} = a_{180} \text{ donc } I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37$$
€.

$$I_{180} = D_{179} \times i$$
 et $I_{180} = a_{180} - A_{180}$ donc $D_{179} \times i = a_{180} - A_{180}$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} =$	$a_{180} = 796,01 \le$	A ₁₈₀ = 792,64€	<i>I</i> ₁₈₀ = 3,37€	$D_{180} =$

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in$$

$$I_{180} + A_{180} = a_{180}$$
 donc $I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37 ext{ } ext{.}$

$$I_{180} = D_{179} \times i$$
 et $I_{180} = a_{180} - A_{180}$ donc $D_{179} \times i = a_{180} - A_{180}$

$$D_{179} = \frac{a_{180} - A_{180}}{i}$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} =$	$a_{180} = 796,01 \le$	A ₁₈₀ = 792,64€	<i>I</i> ₁₈₀ = 3,37€	$D_{180} =$

A la date 180 :

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \le.$$

$$I_{180} + A_{180} = a_{180}$$
 donc $I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37 ext{ } ext{.}$

$$I_{180} = D_{179} \times i$$
 et $I_{180} = a_{180} - A_{180}$ donc $D_{179} \times i = a_{180} - A_{180}$

$$D_{179} = \frac{a_{180} - A_{180}}{i} = \frac{796,01 - 371,01(1 + 0.00425)^{179}}{0.00425}$$

NE PAS utiliser la valeur approchée de A₁₈₀.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 793,34€	$a_{180} = 796,01 \le$	$A_{180} = 792,64 \le$	<i>I</i> ₁₈₀ = 3,37€	$D_{180} =$

A la date 180

$$A_{180} = A_1(1+i)^{179} = 371,01(1+0,00425)^{179} = 792,64 \le.$$

$$I_{180} + A_{180} = a_{180} \text{ donc } I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37$$
€.

$$I_{180} = D_{179} \times i$$
 et $I_{180} = a_{180} - A_{180}$ donc $D_{179} \times i = a_{180} - A_{180}$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 793,34€	$a_{180} = 796,01 \le$	$A_{180} = 792,64 =$	<i>I</i> ₁₈₀ = 3,37€	$D_{180} =$

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in$$

$$I_{180} + A_{180} = a_{180} \text{ donc } I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37$$
€.

$$I_{180} = D_{179} \times i$$
 et $I_{180} = a_{180} - A_{180}$ donc $D_{179} \times i = a_{180} - A_{180}$

$$D_{179} = \tfrac{a_{180} - A_{180}}{i} = \tfrac{796,01 - 371,01(1 + 0.00425)^{179}}{0.00425} = 793,34 \\ \Longleftrightarrow \text{NE PAS utiliser la valeur approchée de } A_{180}.$$

$$D_{180} = D_{179} - A_{180}$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 793,34€	$a_{180} = 796,01 \le$	$A_{180} = 792,64 =$	<i>I</i> ₁₈₀ = 3,37€	$D_{180} =$

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in$$

$$I_{180} + A_{180} = a_{180} \text{ donc } I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37$$
€.

$$I_{180} = D_{179} \times i$$
 et $I_{180} = a_{180} - A_{180}$ donc $D_{179} \times i = a_{180} - A_{180}$

$$D_{179} = \tfrac{a_{180} - A_{180}}{i} = \tfrac{796,01 - 371,01(1 + 0.00425)^{179}}{0.00425} = 793,34 \\ \Longleftrightarrow \text{NE PAS utiliser la valeur approchée de } A_{180}.$$

$$D_{180} = D_{179} - A_{180} = 793,34 - 792,64$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 793,34€	$a_{180} = 796,01 \le$	$A_{180} = 792,64 \le$	<i>I</i> ₁₈₀ = 3,37€	D ₁₈₀ = 0,70€

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in.$$

$$I_{180} + A_{180} = a_{180} \text{ donc } I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37$$
€.

$$I_{180} = D_{179} \times i$$
 et $I_{180} = a_{180} - A_{180}$ donc $D_{179} \times i = a_{180} - A_{180}$

$$D_{179} = \tfrac{a_{180} - A_{180}}{i} = \tfrac{796,01 - 371,01(1 + 0.00425)^{179}}{0.00425} = 793,34 \\ \Longleftrightarrow \text{NE PAS utiliser la valeur approchée de } A_{180}.$$

$$D_{180} = D_{179} - A_{180} = 793,34 - 792,64 = 0,70$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} = 793,34 =$	$a_{180} = 796,01 \le$	$A_{180} = 792,64 =$	<i>I</i> ₁₈₀ = 3,37€	$D_{180} = 0,70 =$

A la date 180 :

Définitions.

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in$$

$$I_{180} + A_{180} = a_{180} \text{ donc } I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37$$
€.

$$I_{180} = D_{179} \times i$$
 et $I_{180} = a_{180} - A_{180}$ donc $D_{179} \times i = a_{180} - A_{180}$

$$D_{179} = \frac{a_{180} - A_{180}}{i} = \frac{796,01 - 371,01(1 + 0.00425)^{179}}{0.00425} = 793,34$$

NE PAS utiliser la valeur approchée de A₁₈₀.

$$D_{180} = D_{179} - A_{180} = 793,34 - 792,64 = 0,70$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 793,34€	$a_{180} = 796,01 \le$	$A_{180} = 792,64 \le$	<i>I</i> ₁₈₀ = 3,37€	$D_{180} = 0,70 =$
180 bis	$D_{179} =$	$a_{180} =$	A ₁₈₀ =	I ₁₈₀ =	$D_{180} =$

• A la date 180 :

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in.$$

$$I_{180} + A_{180} = a_{180}$$
 donc $I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37 ext{ } ext{.}$

$$I_{180} = D_{179} \times i$$
 et $I_{180} = a_{180} - A_{180}$ donc $D_{179} \times i = a_{180} - A_{180}$

$$D_{179} = \frac{a_{180} - A_{180}}{i} = \frac{796,01 - 371,01(1 + 0.00425)^{179}}{0.00425} = 793,34$$
 NE PAS utiliser la valeur approchée de A_{180} .

$$D_{180} = D_{179} - A_{180} = 793,34 - 792,64 = 0,70$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 793,34€	$a_{180} = 796,01 \le$	$A_{180} = 792,64 \le$	<i>I</i> ₁₈₀ = 3,37€	$D_{180} = 0,70 =$
180 bis	$D_{179} = 793,34 \le$	$a_{180} =$	A ₁₈₀ =	I ₁₈₀ =	$D_{180} =$

• A la date 180 :

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in$$

$$I_{180} + A_{180} = a_{180} \text{ donc } I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37 \in$$

$$I_{180} = D_{179} \times i$$
 et $I_{180} = a_{180} - A_{180}$ donc $D_{179} \times i = a_{180} - A_{180}$

$$D_{179} = \frac{a_{180} - A_{180}}{i} = \frac{796,01 - 371,01(1 + 0,00425)^{179}}{0.00425} = 793,34$$
 NE PAS utiliser la valeur approchée de A_{180} .

$$D_{180} = D_{179} - A_{180} = 793,34 - 792,64 = 0,70$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 793,34€	$a_{180} = 796,01 $ €	A ₁₈₀ = 792,64€	<i>I</i> ₁₈₀ = 3,37€	$D_{180} = 0,70 =$
180 bis	D ₁₇₉ = 793,34€	a ₁₈₀ =	$A_{180} = 793,34 =$	I ₁₈₀ =	$D_{180} =$

• A la date 180 :

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in$$

$$I_{180} + A_{180} = a_{180} \text{ donc } I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37 \in$$

$$I_{180} = D_{179} \times i$$
 et $I_{180} = a_{180} - A_{180}$ donc $D_{179} \times i = a_{180} - A_{180}$

$$D_{179} = \frac{a_{180} - A_{180}}{I} = \frac{796,01 - 371,01(1 + 0.00425)^{179}}{0.00425} = 793,34$$
 NE PAS utiliser la valeur approchée de A_{180} .

$$D_{180} = D_{179} - A_{180} = 793,34 - 792,64 = 0,70$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} = 793,34 \in$	$a_{180} = 796,01 \le$	$A_{180} = 792,64 \le$	<i>I</i> ₁₈₀ = 3,37€	$D_{180} = 0,70 =$
180 bis	$D_{179} = 793,34 \le$	$a_{180} =$	$A_{180} = 793,34 \le$	<i>I</i> ₁₈₀ = 3,37€	$D_{180} =$

• A la date 180 :

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in$$

$$I_{180} + A_{180} = a_{180} \text{ donc } I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37 \in$$

$$I_{180} = D_{179} \times i$$
 et $I_{180} = a_{180} - A_{180}$ donc $D_{179} \times i = a_{180} - A_{180}$

$$D_{179} = \frac{a_{180} - A_{180}}{i} = \frac{796,01 - 371,01(1 + 0,00425)^{179}}{0.00425} = 793,34$$
 NE PAS utiliser la valeur approchée de A_{180} .

$$D_{180} = D_{179} - A_{180} = 793,34 - 792,64 = 0,70$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} = 793,34 \in$	$a_{180} = 796,01 $ €	$A_{180} = 792,64 $ €	J ₁₈₀ = 3,37€	$D_{180} = 0.70 $ €
180 bis	$D_{179} = 793,34 \le$	$a_{180} = 796,71 $	$A_{180} = 793,34 \le$	<i>I</i> ₁₈₀ = 3,37€	$D_{180} =$

• A la date 180 :

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in.$$

$$I_{180} + A_{180} = a_{180}$$
 donc $I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37$ €.

$$I_{180} = D_{179} \times i$$
 et $I_{180} = a_{180} - A_{180}$ donc $D_{179} \times i = a_{180} - A_{180}$

$$D_{179} = \frac{a_{180} - A_{180}}{i} = \frac{796,01 - 371,01(1 + 0.00425)^{179}}{0.00425} = 793,34$$
 NE PAS utiliser la valeur approchée de A_{180} .

$$D_{180} = D_{179} - A_{180} = 793,34 - 792,64 = 0,70$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 793,34€	$a_{180} = 796,01 \le$	A ₁₈₀ = 792,64€	I ₁₈₀ = 3,37€	D ₁₈₀ = 0,70€
180 bis	D ₁₇₉ = 793,34€	$a_{180} = 796, 71 \le$	A ₁₈₀ = 793,34€	<i>I</i> ₁₈₀ = 3,37€	$D_{180} = 0,00 =$

• A la date 180 :

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in$$

$$I_{180} + A_{180} = a_{180}$$
 donc $I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37$ €.

$$I_{180} = D_{179} \times i$$
 et $I_{180} = a_{180} - A_{180}$ donc $D_{179} \times i = a_{180} - A_{180}$

$$D_{179} = \frac{a_{180} - A_{180}}{i} = \frac{796,01 - 371,01(1 + 0,00425)^{179}}{0,00425} = 793,34$$
NE PAS utiliser la valeur approchée de A_{180} .

$$D_{180} = D_{179} - A_{180} = 793,34 - 792,64 = 0,70$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 793,34€	$a_{180} = 796,01 \le$	$A_{180} = 792,64 \le$	<i>I</i> ₁₈₀ = 3,37€	$D_{180} = 0,70 \leq$
180 bis	D ₁₇₉ = 793,34€	$a_{180} = 796,71 \le$	$A_{180} = 793,34 \le$	<i>I</i> ₁₈₀ = 3,37€	$D_{180} = 0,00 =$

• A la date 180 :

$$A_{180} = A_1 (1+i)^{179} = 371,01 (1+0,00425)^{179} = 792,64 \in.$$

$$I_{180} + A_{180} = a_{180}$$
 donc $I_{180} = a_{180} - A_{180} = 796,01 - 792,64 = 3,37 ext{ } ext{.}$

$$I_{180} = D_{179} \times i$$
 et $I_{180} = a_{180} - A_{180}$ donc $D_{179} \times i = a_{180} - A_{180}$

$$D_{179} = \frac{a_{180} - A_{180}}{i} = \frac{796,01 - 371,01(1 + 0,00425)^{179}}{0.00425} = 793,34$$
 NE PAS utiliser la valeur approchée de A_{180} .

$$D_{180} = D_{179} - A_{180} = 793,34 - 792,64 = 0,70$$

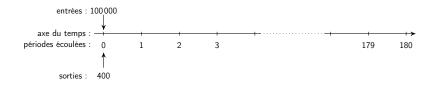
Le prêt est remboursé!

Plan

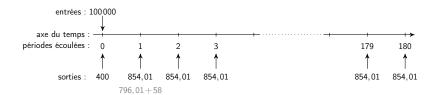
- Définitions
 - Emprunt indivis annuité amortissement.
 - Annuité de fin de période.
- Un exemple d'emprunt
 - Calcul de l'annuité.
 - Tableau d'amortissement.
 - Taux unique équivalent.
 - Taux actuariel effectif global (TAEG).
- 3 Emprunt à annuités constantes.
 - Formule des annuités fixes.
 - Tableau d'amortissement.
 - Progression des amortissements.
 - Taux effectif global, taux actuariel effectif global (TEG TAEG).
- 4 Emprunt à amortissements constants.
 - Formule des amortissments.
 - Tableau d'amortissement

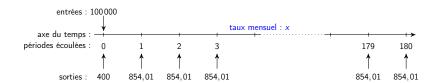

ii it

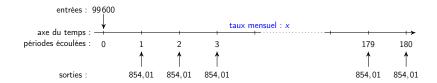
• Prêt immobilier : $100\,000$ euros (à t=0).

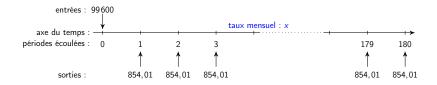


sorties :

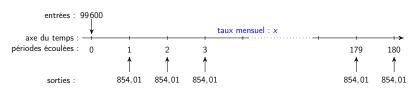

- Prêt immobilier : 100000 euros (à t = 0).
- Frais de dossier : 400 euros (à t = 0).


- Prêt immobilier : $100\,000$ euros (à t=0).
- Frais de dossier : 400 euros (à t = 0).
- Assurance : 58 euros à chaque mensualité.

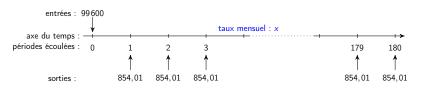

- Prêt immobilier : $100\,000$ euros (à t=0).
- Frais de dossier : 400 euros (à t = 0).
- Assurance : 58 euros à chaque mensualité.


- Prêt immobilier : $100\,000$ euros (à t=0).
- Frais de dossier : 400 euros (à t = 0).
- Assurance : 58 euros à chaque mensualité.
- x : taux d'intérêt mensuel.

- Prêt immobilier : 100000 euros (à t = 0).
- Frais de dossier : 400 euros (à t = 0).
- Assurance : 58 euros à chaque mensualité.
- x : taux d'intérêt mensuel.

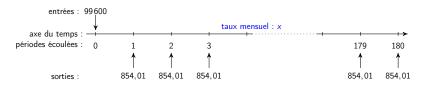


- Prêt immobilier : $100\,000$ euros (à t=0).
- Frais de dossier : 400 euros (à t = 0).
- Assurance : 58 euros à chaque mensualité.
- x : taux d'intérêt mensuel.



Déterminer x pour que les capitaux entrés et sortis soient équivalents.

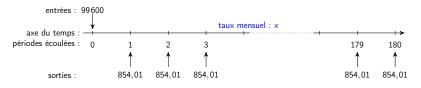
Définitions.



• Utilisation de la formule des annuités constantes.

Utilisation de la formule des annuités constantes.

La situation correspond à un emprunt de 99 600 $\stackrel{\textstyle <}{\scriptstyle <}$ remboursé en 180 mensualités de 854,01 $\stackrel{\textstyle <}{\scriptstyle <}$.

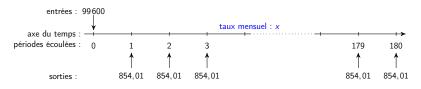


iüt)

Utilisation de la formule des annuités constantes.

La situation correspond à un emprunt de $99\,600$ € remboursé en 180 mensualités de 854,01€.

$$854,01 = \frac{99600x}{1 - (1+x)^{-180}}$$


iüt)

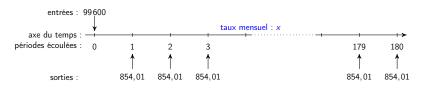
Utilisation de la formule des annuités constantes.

La situation correspond à un emprunt de $99\,600$ € remboursé en 180 mensualités de 854,01 €.

$$854,01 = \frac{99600x}{1 - (1+x)^{-180}}$$

Interprétation de l'équation.

iüt)


Utilisation de la formule des annuités constantes.

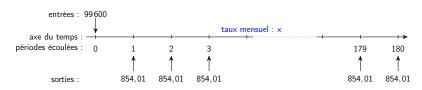
La situation correspond à un emprunt de $99\,600$ € remboursé en 180 mensualités de 854,01 €.

$$854,01 = \frac{99600x}{1 - (1+x)^{-180}}$$

• Interprétation de l'équation.

On pose
$$f(x) = \frac{99600x}{1-(1+x)^{-180}}$$
.

Utilisation de la formule des annuités constantes.


La situation correspond à un emprunt de $99\,600$ € remboursé en 180 mensualités de 854,01 €.

$$854,01 = \frac{99600x}{1 - (1 + x)^{-180}}$$

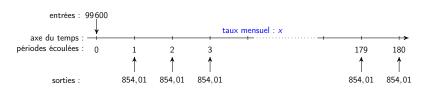
Interprétation de l'équation.

On pose
$$f(x) = \frac{99600x}{1-(1+x)^{-180}}$$
.

f(x) représente la mensualité à payer pour un taux mensuel x.

Utilisation de la formule des annuités constantes.

La situation correspond à un emprunt de $99\,600$ € remboursé en 180 mensualités de 854,01 €.


$$854,01 = \frac{99600x}{1 - (1+x)^{-180}}$$

Interprétation de l'équation.

On pose
$$f(x) = \frac{99600x}{1-(1+x)^{-180}}$$
.

f(x) représente la mensualité à payer pour un taux mensuel x.

On cherche la valeur de x pour laquelle f(x) (mensualité à payer) vaut 854,01.

Encadrement de x.

• Justifier que x est compris entre 0.5% et 0.6%.

Encadrement de x.

• Justifier que x est compris entre 0.5% et 0.6%.

• Justifier que x est compris entre 0.5% et 0.6%.

$$f(0,005) = 840,48$$

Encadrement de x.

• Justifier que x est compris entre 0,5% et 0,6%.

f(0,005) = 840,48: au taux mensuel 0,5% la mensualité est de 840,48 \le .

Encadrement de x.

• Justifier que x est compris entre 0,5% et 0,6%.

f(0,005) = 840,48: au taux mensuel 0,5% la mensualité est de 840,48 \le .

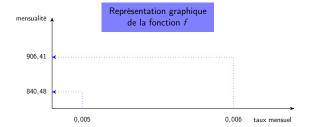
$$f(0,006) = 906,41$$

• Justifier que x est compris entre 0.5% et 0.6%.

f(0,005) = 840,48: au taux mensuel 0,5% la mensualité est de 840,48 \le .

• Justifier que x est compris entre 0.5% et 0.6%.

f(0,005) = 840,48: au taux mensuel 0,5% la mensualité est de 840,48€.


• Justifier que x est compris entre 0.5% et 0.6%.

f(0,005) = 840,48: au taux mensuel 0,5% la mensualité est de $840,48 \le$.

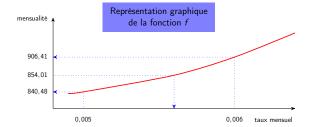
• Justifier que x est compris entre 0,5% et 0,6%.

f(0,005) = 840,48: au taux mensuel 0,5% la mensualité est de $840,48 \le$.

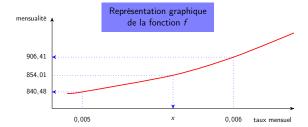
• Justifier que x est compris entre 0.5% et 0.6%.


f(0,005) = 840,48: au taux mensuel 0,5% la mensualité est de $840,48 \le$.

 $f\left(0,006\right)=906,41$: au taux mensuel 0,6% la mensualité est de 906,41 €.

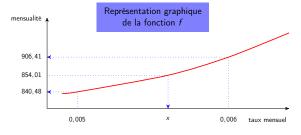

• Justifier que x est compris entre 0,5% et 0,6%.

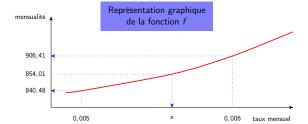
f(0,005) = 840,48: au taux mensuel 0,5% la mensualité est de $840,48 \le$.

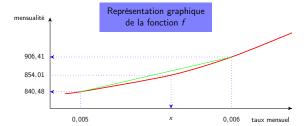

• Justifier que *x* est compris entre 0,5% et 0,6%.

f(0,005) = 840,48: au taux mensuel 0,5% la mensualité est de 840,48 \in .

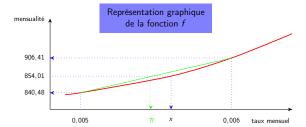
• Justifier que *x* est compris entre 0,5% et 0,6%.


f(0,005) = 840,48: au taux mensuel 0,5% la mensualité est de 840,48 \in .

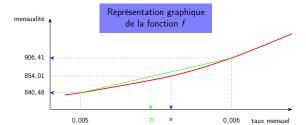

• Justifier que x est compris entre 0.5% et 0.6%.


f(0,005) = 840,48: au taux mensuel 0,5% la mensualité est de 840,48 \in .

f(0,006) = 906,41: au taux mensuel 0,6% la mensualité est de $906,41 \in$.

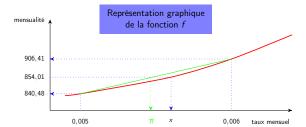

x est compris entre 0,5% et 0,6%.

• Schéma d'interpolation linéaire.

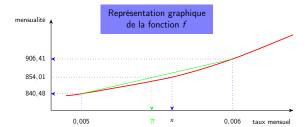

Définitions.

• Schéma d'interpolation linéaire.

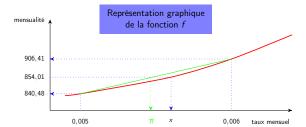
taux mensuel:


mensualité :

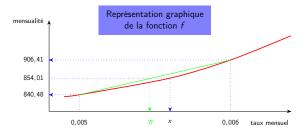
• Schéma d'interpolation linéaire.


taux mensuel: 0,005

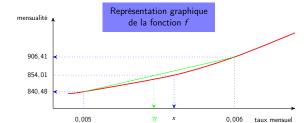
mensualité: 840,48

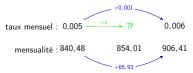

• Schéma d'interpolation linéaire.

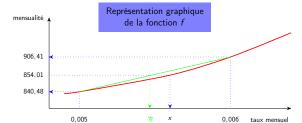
taux mensuel: 0,005 0,006
mensualité: 840,48 906,41

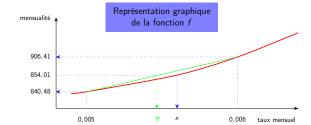


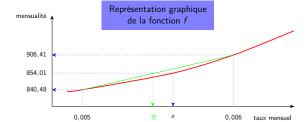

```
taux mensuel : 0,005 ?? 0,006

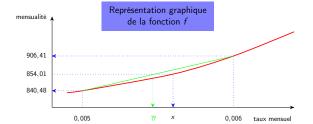

mensualité : 840,48 854,01 906,41
```

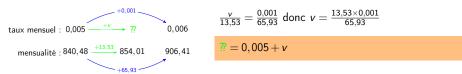


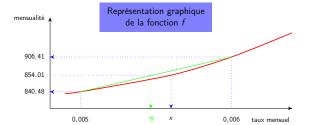


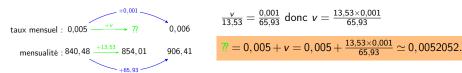


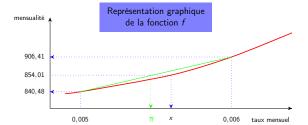


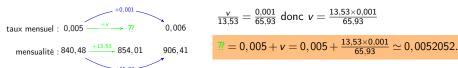


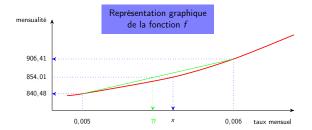












• Schéma d'interpolation linéaire.

 $x \simeq 0,0052052$ soit 0,52052% mensuel.

• TEG : taux effectif global.

TEG: taux effectif global.

Le taux effectif global est le taux annuel proportionnel :

• TEG: taux effectif global.

Le taux effectif global est le taux annuel proportionnel :

 $TEG = 12x \simeq 12 \times 0,0052052 \simeq 0,0625$ soit un TEG de 6,25% annuel.

• TEG: taux effectif global.

Le taux effectif global est le taux annuel proportionnel :

 $TEG = 12x \simeq 12 \times 0,0052052 \simeq 0,0625$ soit un TEG de 6,25% annuel.

• TAEG: taux actuariel effectif global.

• TEG: taux effectif global.

Le taux effectif global est le taux annuel proportionnel :

 $TEG = 12x \simeq 12 \times 0,0052052 \simeq 0,0625$ soit un TEG de 6,25% annuel.

• TAEG: taux actuariel effectif global.

Le taux actuariel effectif global est le taux annuel équivalent :

• TEG: taux effectif global.

Le taux effectif global est le taux annuel proportionnel :

$$TEG = 12x \simeq 12 \times 0,0052052 \simeq 0,0625$$
 soit un TEG de 6,25% annuel.

• TAEG : taux actuariel effectif global.

Le taux actuariel effectif global est le taux annuel équivalent :

$$TAEG = (1+x)^{12} - 1 \simeq (1+0,0052052)^{12} - 1 \simeq 0,0643$$
 soit un TAEG de 6,43% annuel.

Plan

- Définitions
 - Emprunt indivis annuité amortissement.
 - Annuité de fin de période.
- Un exemple d'emprunt
 - Calcul de l'annuité.
 - Tableau d'amortissement.
 - Taux unique équivalent.
 - Taux actuariel effectif global (TAEG).
 - 5 Emprunt a annuites constant
 - Formule des annuités fixes.
 - Tableau d'amortissement.
 - Progression des amortissements.
 - Taux effectif global, taux actuariel effectif global (TEG TAEG).
- Emprunt à amortissements constants.
 Formule des amortissments.
 - Tableau d'amortissement.

- On emprunte D euros (à t=0).
- On rembourse en *n* périodes.
- Les annuités sont versées en fin de période.
- Dans chaque annuité, l'amortissement A_k est le même.

$$A = \frac{D}{n}$$
.

$$A = \frac{100000}{100} = 555,56 \in$$
.

- On emprunte D euros (à t = 0).
- On rembourse en *n* périodes.
- Les annuités sont versées en fin de période.
- Dans chaque annuité, l'amortissement A_k est le même.

$$A = \frac{D}{n}$$
.

Exemple

On emprunte, pour une maison, $100\,000$ $\stackrel{\frown}{=}$ remboursables en 15 ans à amortissement constant au taux nominal annuel de 5,1%. Calculer le montant A des amortissements.

$$A = \frac{100000}{180} = 555,56 \in$$
.

- On emprunte D euros (à t = 0).
- On rembourse en *n* périodes.
- Les annuités sont versées en fin de période.
- Dans chaque annuité, l'amortissement A_k est le même.

$$A = \frac{D}{n}$$
.

Exemple

On emprunte, pour une maison, $100\,000$ \equiv remboursables en 15 ans à amortissement constant au taux nominal annuel de 5,1%. Calculer le montant A des amortissements.

$$A = \frac{100000}{180} = 555,56 \in$$
.

- On emprunte D euros (à t=0).
- On rembourse en *n* périodes.
- Les annuités sont versées en fin de période.
- Dans chaque annuité, l'amortissement A_k est le même.

$$A = \frac{D}{n}$$
.

$$A = \frac{100000}{180} = 555,56 \in$$
.

Présentation du contexte - Formule des amortissements.

- On emprunte D euros (à t=0).
- On rembourse en *n* périodes.
- Les annuités sont versées en fin de période.
- Dans chaque annuité, l'amortissement A_k est le même.

$$A = \frac{D}{n}$$
.

$$A = \frac{100000}{180} = 555,56 \in$$
.

Présentation du contexte - Formule des amortissements.

- On emprunte D euros (à t = 0).
- On rembourse en *n* périodes.
- Les annuités sont versées en fin de période.
- Dans chaque annuité, l'amortissement A_k est le même.

$$A = \frac{D}{n}$$
.

Exemple

On emprunte, pour une maison, $100\,000$ \in remboursables en 15 ans à amortissement constant au taux nominal annuel de 5,1%. Calculer le montant A des amortissements.

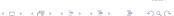
$$A = \frac{100\,000}{180} = 555,56 \rightleftharpoons$$
.

Présentation du contexte - Formule des amortissements.

- On emprunte D euros (à t = 0).
- On rembourse en *n* périodes.
- Les annuités sont versées en fin de période.
- Dans chaque annuité, l'amortissement A_k est le même.

$$A = \frac{D}{n}$$
.

Exemple


On emprunte, pour une maison, $100\,000$ \in remboursables en 15 ans à amortissement constant au taux nominal annuel de 5,1%. Calculer le montant A des amortissements.

$$A = \frac{100000}{180} = 555,56 \le$$
.

Plan

Définitions.

- Définitions
 - Emprunt indivis annuité amortissement.
 - Annuité de fin de période.
- Un exemple d'emprunt
 - Calcul de l'annuité.
 - Tableau d'amortissement.
 - Taux unique équivalent.
 - Taux actuariel effectif global (TAEG).
 - Emprunt a annuites constant
 - Formule des annuités fixes.
 - Tableau d'amortissement.
 - Progression des amortissements.
 - Taux effectif global, taux actuariel effectif global (TEG TAEG).
- 4 Emprunt à amortissements constants.
 - Formule des amortissments.


ii it

• Prêt immobilier de 100 000€ au taux nominal annuel 5,1% (amortissement constant).

	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1					

• Prêt immobilier de 100000€ au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1					
2					

• Prêt immobilier de 100000€ au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€				
2					

A la date 1 :

Dette : $D_0 = 100000 = ...$

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \le$			<i>I</i> ₁ = 425€	
2					

 $\times 0.00425$

A la date 1 :

Définitions.

Dette : $D_0 = 1000000$ €.

Interest: $I_1 = 100000 \times 0,00425 = 425 \in$.

iut

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€		$A_1 = 555, 56 \rightleftharpoons$	<i>I</i> ₁ = 425€	
2					

A la date 1 :

Définitions.

Dette : $D_0 = 100000$ €.

Interêt: $I_1 = 100000 \times 0,00425 = 425 \in$.

Amortissement : $A_1 = 555, 56 €$

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	$a_1 = 980, 56 =$	$A_1 = 555, 56 \rightleftharpoons$	<i>I</i> ₁ = 425€	
2)		

A la date 1 :

Définitions.

Dette : $D_0 = 1000000$ €.

Interêt: $I_1 = 100000 \times 0,00425 = 425 \in$.

Amortissement : $A_1 = 555, 56 \in$

Annuité : $a_1 = 425 + 555, 56 = 980, 56 €$

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	$a_1 = 980, 56 \le$	<i>A</i> ₁ = 555,56€	<i>I</i> ₁ = 425€	$D_1 = 99444,44 \in$
2					

A la date 1 :

Dette : $D_0 = 100000$ €.

Interest: $I_1 = 100000 \times 0,00425 = 425 \in$.

Amortissement : $A_1 = 555, 56 \blacktriangleleft$

Annuité : $a_1 = 425 + 555, 56 = 980, 56 €$.

Reste dû: $D_1 = 100000 - 555, 56 = 99444, 44 \le$.

iüt

• Prêt immobilier de 100000€ au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	$a_1 = 980, 56 $	$A_1 = 555, 56 \rightleftharpoons$	<i>I</i> ₁ = 425€	$D_1 = 99444,44 \le$
2					

A la date 1 :

Dette : $D_0 = 100000 = ...$

Intérêt : $I_1 = 100000 \times 0,00425 = 425 \in$.

Amortissement : $A_1 = 555, 56 \in$

Annuité : $a_1 = 425 + 555, 56 = 980, 56 €$.

Reste dû: $D_1 = 100000 - 555, 56 = 99444, 44 \le$.

• A la date 2 :

ii'it

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	$a_1 = 980, 56 \le$	$A_1 = 555, 56 \rightleftharpoons$	<i>I</i> ₁ = 425€	$D_1 = 99444,44 \le$
2	D ₁ = 99444,44€				

A la date 1 :

Dette : $D_0 = 100000$ €.

Interest: $I_1 = 100000 \times 0,00425 = 425 \in$.

Amortissement : $A_1 = 555, 56$

Annuité : $a_1 = 425 + 555, 56 = 980, 56 €$.

Reste dû: $D_1 = 100000 - 555, 56 = 99444, 44 \le$.

• A la date 2 :

Dette : $D_1 = 99444, 44 €$.

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	$a_1 = 980, 56 \le$	$A_1 = 555, 56 \rightleftharpoons$	<i>I</i> ₁ = 425€	$D_1 = 99444,44 \le$
2	$D_1 = 99444,44 \le$			<i>I</i> ₂ = 422,64€	

A la date 1 :

Dette : $D_0 = 100000$ €.

Interêt: $I_1 = 100000 \times 0,00425 = 425 \le$.

Amortissement : $A_1 = 555, 56 \blacktriangleleft$.

Annuité : $a_1 = 425 + 555, 56 = 980, 56 €$.

Reste dû: $D_1 = 100000 - 555, 56 = 99444, 44 \le$.

• A la date 2 :

Dette : $D_1 = 99444,44$ €.

Interêt : $I_2 = 99444, 44 \times 0,00425 = 422,64 \stackrel{\blacktriangleleft}{\in}$.

iut

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \le$	<i>a</i> ₁ = 980,56€	$A_1 = 555, 56 \rightleftharpoons$	<i>I</i> ₁ = 425€	$D_1 = 99444,44 \le$
2	$D_1 = 99444,44 \in$		$A_2 = 555, 56 \le$	<i>I</i> ₂ = 422,64€	

A la date 1 :

Dette : $D_0 = 100000$ €.

Interest: $I_1 = 100000 \times 0,00425 = 425 \in$.

Amortissement : $A_1 = 555, 56 \blacktriangleleft$

Annuité : $a_1 = 425 + 555, 56 = 980, 56 €$.

Reste dû: $D_1 = 100000 - 555, 56 = 99444, 44 \le$.

A la date 2 :

Dette : $D_1 = 99444,44$ €.

Interest: $I_2 = 99444, 44 \times 0,00425 = 422,64 \in$

Amortissement : $A_2 = 555, 56$ €.

ii'it

 Prêt immobilier de 100 000 € au taux nominal annuel 5.1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	a ₁ = 980,56€	$A_1 = 555, 56 \rightleftharpoons$	<i>I</i> ₁ = 425€	$D_1 = 99444,44 \le$
2	D ₁ = 99444,44€	<i>a</i> ₂ = 978,20€	$A_2 = 555, 56 \in$	<i>I</i> ₂ = 422,64€	

A la date 1 :

Définitions.

Dette : $D_0 = 100000 = ...$

Intérêt : $I_1 = 100000 \times 0,00425 = 425 \in$.

Amortissement : $A_1 = 555, 56 \in$

Annuité : $a_1 = 425 + 555, 56 = 980, 56 €$

Reste dû: $D_1 = 100000 - 555, 56 = 99444, 44 \le$.

A la date 2 :

Dette : $D_1 = 99444, 44 \in$

Interêt : $I_2 = 99444, 44 \times 0,00425 = 422,64 \in$.

Amortissement : $A_2 = 555.56 \stackrel{\blacksquare}{\in}$.

Annuité : $a_2 = 422,64 + 555,56 = 978,20$ €.

ii'it

• Prêt immobilier de 100000€ au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100 000, 00€	<i>a</i> ₁ = 980,56€	A ₁ = 555,56 €	<i>l</i> ₁ = 425€	D ₁ = 99444,44€
2	D ₁ = 99 444, 44€	<i>a</i> ₂ = 978, 20€	$A_2 = 555, 56 \rightleftharpoons$	<i>I</i> ₂ = 422,64€	D ₂ = 98888,88€

A la date 1 :

Définitions.

Dette : $D_0 = 100000 = ...$

Intérêt : $I_1 = 100000 \times 0,00425 = 425 \in$.

Amortissement : $A_1 = 555, 56 \in$

Annuité : $a_1 = 425 + 555, 56 = 980, 56 €$

Reste dû: $D_1 = 100000 - 555, 56 = 99444, 44 \le$.

A la date 2 :

Dette : $D_1 = 99444, 44 \in$

Interêt : $I_2 = 99444, 44 \times 0,00425 = 422,64 \in$.

Amortissement : $A_2 = 555, 56 \blacktriangleleft$.

Annuité : $a_2 = 422,64 + 555,56 = 978,20 €$

Reste dû : $D_2 = 99444,44 - 555,56 = 98888,88$ €.

iut

Définitions.

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
4					

Définitions.

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3					
4					

		•	Α	\ I	a	d	at	е		:																								
-	-		_	Ţ			-		_	-							-			i			-							-			-	
	-										1	: - :			÷					1 .	1		 •							:		• • •	111	
i.	١.											i.,	ij.	1	ij.					1			 i.,	d.						i.,				
:	: :												1							1			 111	111						111	111	11		
																				1														
																				1														
																				1														
																				1														
																				T													٠.	125- #
	٠.										÷												 ٠										:1	ut

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	D ₂ = 98888,88€				
4					

			,	١.	1				1						-		
	٠		1	١			`	-	4	•	١.	۰	-	2	-	•	
ь,			г	٦		c	а	·	a	c	a ∙	ι	7	=		,	

Définitions.

Dette : $D_2 = 98888,88$ €.

iut

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	$D_2 = 98888,88 $ €			<i>I</i> ₃ = 420,28€	
4				/	

 $\times 0.00425$

A la date 3 :

Définitions.

Dette : $D_2 = 98888,88$ €.

Interêt: $I_3 = 98888, 88 \times 0,00425 = 420,28 = 6.000$

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	D ₂ = 98888,88€		<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	
4					

A la date 3 :

Définitions.

Dette : $D_2 = 98888,88$ €.

Interest: $I_3 = 98888, 88 \times 0,00425 = 420,28 \in$.

Amortissement : $A_3 = 555, 56 \in$

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	D ₂ = 98888,88€	a ₃ = 975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	
4			+	. — 🗡	

A la date 3 :

Définitions.

Dette : $D_2 = 98888,88$ €.

Intérêt : $I_3 = 98888, 88 \times 0,00425 = 420,28$ €.

Amortissement : $A_3 = 555, 56$

Annuité : $a_3 = 420, 28 + 555, 56 = 975, 84$ €.

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	D ₂ = 98888,88€	a ₃ = 975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	D ₃ = 98333,32€
4					

A la date 3 :

Dette : $D_2 = 98888,88$ €.

Intérêt : $I_3 = 98888, 88 \times 0,00425 = 420,28$ €.

Amortissement : $A_3 = 555, 56$ €.

Annuité : $a_3 = 420, 28 + 555, 56 = 975, 84$ €.

Reste dû: $D_3 = 98888, 88 - 555, 56 = 98333, 32 \le$.

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	D ₂ = 98888,88€	<i>a</i> ₃ = 975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	D ₃ = 98333,32€
4					

A la date 3 :

Dette : $D_2 = 98888,88$ €.

Interest: $I_3 = 98888, 88 \times 0,00425 = 420,28 \in$.

Amortissement : $A_3 = 555, 56$ €.

Annuité : $a_3 = 420, 28 + 555, 56 = 975, 84 \in$

Reste dû: $D_3 = 98888, 88 - 555, 56 = 98333, 32 \le$.

iüt)

• Prêt immobilier de 100000€ au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	D ₂ = 98888,88€	a ₃ = 975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	D ₃ = 98333,32€
4	$D_3 = 98333,32 $				

A la date 3 :

Dette : $D_2 = 98888,88$ €.

Intérêt : $I_3 = 98888, 88 \times 0,00425 = 420,28 \le$.

Amortissement : $A_3 = 555, 56 \rightleftharpoons$.

Annuité : $a_3 = 420,28 + 555,56 = 975,84$ €

Reste dû: $D_3 = 98888, 88 - 555, 56 = 98333, 32 \in$.

A la date 4 :

Dette : $D_3 = 98333,32$ €.

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	D ₂ = 98888,88€	a ₃ = 975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	D ₃ = 98333,32€
4	D ₃ = 98333,32€			<i>I</i> ₄ = 417,92€	

A la date 3 :

Définitions.

Dette : $D_2 = 98888,88$ €.

Interest: $I_3 = 98888, 88 \times 0,00425 = 420,28 \in$

Amortissement : $A_3 = 555, 56$

Annuité : $a_3 = 420, 28 + 555, 56 = 975, 84$ €.

Reste dû: $D_3 = 98888, 88 - 555, 56 = 98333, 32 €$.

A la date 4 :

Dette : $D_3 = 98333,32$ €.

Intérêt : $I_4 = 98333,32 \times 0,00425 = 417,92 €$.

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	D ₂ = 98888,88€	a ₃ = 975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	D ₃ = 98333,32€
4	D ₃ = 98333,32€		<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€	

A la date 3 :

Dette : $D_2 = 98888,88$ €.

Interest: $I_3 = 98888, 88 \times 0,00425 = 420,28 \le$.

Amortissement : $A_3 = 555, 56$ €.

Annuité : $a_3 = 420, 28 + 555, 56 = 975, 84$ €

Reste dû: $D_3 = 98888, 88 - 555, 56 = 98333, 32 \stackrel{\blacktriangleleft}{=}$.

A la date 4 :

Dette : $D_3 = 98333,32$ €.

Interest: $I_4 = 98333, 32 \times 0,00425 = 417,92 =$

Amortissement : $A_4 = 555, 56 \in$.

 Prêt immobilier de 100 000 € au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	$D_2 = 98888,88 \le$	a ₃ = 975,84€	A ₃ = 555,56€	<i>l</i> ₃ = 420,28€	D ₃ = 98333,32€
4	$D_3 = 98333,32 $	<i>a</i> ₄ = 973,48€	$A_4 = 555, 56 \le$	<i>I</i> ₄ = 417,92€	

A la date 3 :

Dette : $D_2 = 98888, 88 €$.

Interest: $I_3 = 98888, 88 \times 0,00425 = 420,28 \in$

Amortissement : $A_3 = 555, 56 \blacktriangleleft$.

Annuité : $a_3 = 420, 28 + 555, 56 = 975, 84$ €.

Reste dû: $D_3 = 98888, 88 - 555, 56 = 98333, 32 €$.

A la date 4 :

Dette : $D_3 = 98333,32$ €.

Interêt : $I_4 = 98333,32 \times 0,00425 = 417,92 =$

Amortissement : $A_4 = 555, 56$ €.

Annuité : $a_4 = 417,92 + 555,56 = 973,48$ €.

iut

• Prêt immobilier de 100000€ au taux nominal annuel 5,1% (amortissement constant).

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
3	$D_2 = 98888,88 $ €	a ₃ = 975,84€	<i>A</i> ₃ = 555,56 €	<i>I</i> ₃ = 420,28€	D ₃ = 98333,32€
4	D ₃ = 98333,32€	<i>a</i> ₄ = 973, 48€	A ₄ = 555,56€	<i>I</i> ₄ = 417,92€	D ₄ = 97777,76€

A la date 3 :

Définitions.

Dette : $D_2 = 98888,88$ €.

Intérêt : $I_3 = 98888, 88 \times 0,00425 = 420,28 \le$.

Amortissement : $A_3 = 555, 56 \in$.

Annuité : $a_3 = 420,28 + 555,56 = 975,84$ €

Reste dû: $D_3 = 98888, 88 - 555, 56 = 98333, 32 \in$.

A la date 4 :

Dette : $D_3 = 98333,32$ €.

Interest: $I_4 = 98333, 32 \times 0,00425 = 417,92 \in$

Amortissement : $A_4 = 555, 56 \blacktriangleleft$.

Annuité : $a_4 = 417,92 + 555,56 = 973,48 €$

Reste dû : $D_4 = 98333,32 - 555,56 = 97777,76 €$.

iut

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \le$	$a_1 = 980, 56 $	$A_1 = 555, 56 $	<i>I</i> ₁ = 425€	$D_1 = 99444,44 =$
2	D ₁ = 99444,44€	<i>a</i> ₂ = 978,20€	$A_2 = 555, 56 =$	<i>I</i> ₂ = 422,64€	D ₂ = 98888,88€
3	$D_2 = 98888,88 $ €	<i>a</i> ₃ = 975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	$D_3 = 98333,32 $ €
4	D ₃ = 98333,32€	<i>a</i> ₄ = 973,48€	<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€	<i>D</i> ₄ = 97777,76€

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€	<i>a</i> ₁ = 980,56€	$A_1 = 555, 56 $	<i>I</i> ₁ = 425€	$D_1 = 99444,44 \stackrel{\blacksquare}{\in}$
2	D ₁ = 99444,44€	<i>a</i> ₂ = 978,20€	$A_2 = 555, 56 \rightleftharpoons$	<i>I</i> ₂ = 422,64€	D ₂ = 98888,88€
3	D ₂ = 98888,88€	<i>a</i> ₃ = 975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	D ₃ = 98333,32€
4	D ₃ = 98333,32€	<i>a</i> ₄ = 973,48€	<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€	D ₄ = 97777,76€

• Progression des D_n :

Définitions.

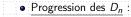
Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \in \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	7. — 980,56€	<i>A</i> ₁ = 555,56€	<i>I</i> ₁ = 425€	$D_1 = 99444,44 =$
2	D ₁ = 99 444, 44 € ✓	a ₂ = 978,20€	$A_2 = 555, 56 =$	<i>I</i> ₂ = 422,64€	D ₂ = 98888,88€
3	D ₂ = 98888,88€	<i>a</i> ₃ = 975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	D ₃ = 98333,32€
4	D ₃ = 98333,32€	<i>a</i> ₄ = 973,48€	<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€	D ₄ = 97777,76€

• Progression des D_n :

$$D_1 = D_0 - 555, 56.$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \in \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	75. — 980,56€	$A_1 = 555, 56 $	<i>I</i> ₁ = 425€	$D_1 = 99444,44 =$
2	D ₁ = 99444,44€ ≺	978,20€	$A_2 = 555, 56 \rightleftharpoons$	<i>I</i> ₂ = 422,64€	D ₂ = 98888,88€
3	D ₂ = 98888,88€ ✓	a ₃ = 975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	$D_3 = 98333,32 =$
4	D ₃ = 98333,32€	<i>a</i> ₄ = 973,48€	<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€	D ₄ = 97777,76€

• Progression des D_n :


$$D_1 = D_0 - 555, 56.$$

$$D_2 = D_1 - 555, 56.$$

iüt≯

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	D ₀ = 100000,00€ \	_555.56 980,56€	<i>A</i> ₁ = 555,56€	<i>I</i> ₁ = 425€	$D_1 = 99444,44 =$
2	$D_1 = 99444,44 \in \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	3,50 978,20€	$A_2 = 555, 56 =$	<i>I</i> ₂ = 422,64€	D ₂ = 98888,88€
3	D ₂ = 98888,88€ ₹	975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	D ₃ = 98333,32€
4	D ₃ = 98333,32€ ✓	a ₄ = 973,48€	<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€	D ₄ = 97777,76€

$$D_1 = D_0 - 555, 56.$$

$$D_2 = D_1 - 555, 56.$$

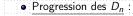
$$D_3 = D_2 - 555, 56.$$

iüt≯

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \in \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	_555,56 980,56€	$A_1 = 555, 56$ €	<i>I</i> ₁ = 425€	$D_1 = 99444,44 =$
2	D ₁ = 99444,44€ ≺	978,20€	$A_2 = 555, 56 \rightleftharpoons$	<i>I</i> ₂ = 422,64€	D ₂ = 98888,88€
3	D ₂ = 98888,88€ ≺	975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	D ₃ = 98333,32€
4	D ₃ = 98333,32€ ✓	a ₄ = 973,48€	<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€	D ₄ = 97777,76€

• Progression des D_n :

$$D_1 = D_0 - 555, 56.$$


$$D_2 = D_1 - 555, 56.$$

$$D_3 = D_2 - 555, 56.$$

$$D_n = D_{n-1} - 555, 56.$$

iüt≯

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \in \mathbb{R}$	_555,56 980,56€	$A_1 = 555, 56 $	<i>I</i> ₁ = 425€	$D_1 = 99444,44 =$
2			$A_2 = 555, 56 \rightleftharpoons$	<i>I</i> ₂ = 422,64€	$D_2 = 98888,88 =$
3	D ₂ = 98888,88€ ₹	975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	$D_3 = 98333,32 =$
4	D ₃ = 98333,32€ ✓	<i>a</i> ₄ = 973,48€	<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€	<i>D</i> ₄ = 97777,76€

$$D_1 = D_0 - 555, 56.$$

$$D_2 = D_1 - 555, 56.$$

$$D_3 = D_2 - 555, 56.$$

$$D_n = D_{n-1} - 555, 56.$$

• Expression de I_2 en fonction de I_1 :

iüt

 $I_2 = D_1 \times i$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \in \mathbb{R}$	_555,56 980,56€	$A_1 = 555, 56 $	<i>I</i> ₁ = 425€	$D_1 = 99444,44 \le$
2	$D_1 = 99444,44 \leqslant \checkmark$	978,20€	$A_2 = 555, 56 \rightleftharpoons$	<i>I</i> ₂ = 422,64€	$D_2 = 98888,88 =$
3	D ₂ = 98888,88€ ₹		<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	$D_3 = 98333,32 =$
4	D ₃ = 98333,32€ ✓	<i>a</i> ₄ = 973,48€	<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€	<i>D</i> ₄ = 97777,76€

• Progression des
$$D_n$$
:

$$D_1 = D_0 - 555, 56.$$

$$D_2 = D_1 - 555, 56.$$

$$D_3 = D_2 - 555, 56.$$

$$D_n = D_{n-1} - 555, 56.$$

• Expression de
$$I_2$$
 en fonction de I_1 :

iüt≯

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \in \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	_555,56 980,56€	$A_1 = 555, 56 $	<i>I</i> ₁ = 425€	$D_1 = 99444,44 =$
2			$A_2 = 555, 56 \rightleftharpoons$	<i>I</i> ₂ = 422,64€	$D_2 = 98888,88 =$
3	D ₂ = 98888,88€ ≺	975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	$D_3 = 98333,32 =$
4	D ₃ = 98333,32€ ₹	<i>a</i> ₄ = 973,48€	<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€	<i>D</i> ₄ = 97777,76€

• Progression des D_n :

$$D_1 = D_0 - 555, 56.$$

$$D_2 = D_1 - 555, 56.$$

$$D_3 = D_2 - 555, 56.$$

$$D_n = D_{n-1} - 555, 56.$$

• Expression de
$$l_2$$
 en fonction de l_1 :

$$I_2 = D_1 \times i = (D_0 - A) \times i$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \in \mathbb{R}$	_555,56 980,56€	$A_1 = 555, 56 $	<i>I</i> ₁ = 425€	$D_1 = 99444,44 =$
2			$A_2 = 555, 56 \rightleftharpoons$	<i>I</i> ₂ = 422,64€	$D_2 = 98888,88 =$
3	D ₂ = 98888,88€ ₹	975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	$D_3 = 98333,32 =$
4	D ₃ = 98333,32€ ✓	<i>a</i> ₄ = 973,48€	<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€	<i>D</i> ₄ = 97777,76€

• Progression des D_n :

$$D_1 = D_0 - 555, 56.$$

$$D_2 = D_1 - 555, 56.$$

$$D_3 = D_2 - 555, 56.$$

$$D_n = D_{n-1} - 555, 56.$$

• Expression de l_2 en fonction de l_1 :

$$I_2 = D_1 \times i = (D_0 - A) \times i = D_0 \times i - A \times i$$

iut

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \in \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	_555,56 980,56€	$A_1 = 555, 56 $	<i>I</i> ₁ = 425€	$D_1 = 99444,44 =$
2			$A_2 = 555, 56 \rightleftharpoons$	<i>I</i> ₂ = 422,64€	D ₂ = 98888,88€
3	D ₂ = 98888,88€ ≺	975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	$D_3 = 98333,32 =$
4	D ₃ = 98333,32€ ₹	<i>a</i> ₄ = 973,48€	<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€	<i>D</i> ₄ = 97777,76€

• Progression des D_n :

$$D_1 = D_0 - 555, 56.$$

$$D_2 = D_1 - 555, 56.$$

$$D_3 = D_2 - 555, 56.$$

$$D_n = D_{n-1} - 555, 56.$$

• Expression de
$$I_2$$
 en fonction de I_1 :

$$I_2 = D_1 \times i = (D_0 - A) \times i = D_0 \times i - A \times i$$

$$I_2 = I_1 - A \times i$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \in \mathbb{R}$	_555,56 980,56€	$A_1 = 555, 56 $	<i>I</i> ₁ = 425€	$D_1 = 99444,44 =$
2			$A_2 = 555, 56 \rightleftharpoons$	<i>I</i> ₂ = 422,64€	D ₂ = 98888,88€
3	D ₂ = 98888,88€ ₹	975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	$D_3 = 98333,32 =$
4	D ₃ = 98333,32€ ✓	<i>a</i> ₄ = 973,48€	<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€	<i>D</i> ₄ = 97777,76€

• Progression des
$$D_n$$
:

$$D_1 = D_0 - 555, 56.$$

$$D_2 = D_1 - 555, 56.$$

$$D_3 = D_2 - 555, 56.$$

$$D_n = D_{n-1} - 555, 56.$$

• Expression de
$$I_2$$
 en fonction de I_1 :

$$I_2 = D_1 \times i = (D_0 - A) \times i = D_0 \times i - A \times i$$

$$I_2 = I_1 - A \times i = I_1 - 555, 56 \times 0,00425$$

iut

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \in \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	_555,56 980,56€	$A_1 = 555, 56 $	<i>I</i> ₁ = 425€	$D_1 = 99444,44 =$
2			$A_2 = 555, 56 \rightleftharpoons$	<i>I</i> ₂ = 422,64€	$D_2 = 98888,88 $ €
3	D ₂ = 98888,88€ ≺	975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	$D_3 = 98333,32 $
4	D ₃ = 98333,32€ ₹	<i>a</i> ₄ = 973,48€	<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€	<i>D</i> ₄ = 97777,76€

• Progression des
$$D_n$$
:

$$D_1 = D_0 - 555, 56.$$

$$D_2 = D_1 - 555, 56.$$

$$D_3 = D_2 - 555, 56.$$

$$D_n = D_{n-1} - 555, 56.$$

• Expression de l_2 en fonction de l_1 :

$$I_2 = D_1 \times i = (D_0 - A) \times i = D_0 \times i - A \times i$$

$$I_2 = I_1 - A \times i = I_1 - 555, 56 \times 0,00425$$

$$I_2 = I_1 - 2,36.$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \in \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	_555,56 980,56€	$A_1 = 555, 56 $	<i>I</i> ₁ = 425€ ∖	$D_{-2,36} = 99444,44 \le$
2			$A_2 = 555, 56 \rightleftharpoons$	<i>I</i> ₂ = 422,64€ ₹	$D_2 = 98888,88 =$
3	D ₂ = 98888,88€ ≺	975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€	$D_3 = 98333,32 =$
4	D ₃ = 98333,32€ ✓	<i>a</i> ₄ = 973,48€	<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€	<i>D</i> ₄ = 97777,76€

• Progression des
$$D_n$$
:

$$D_1 = D_0 - 555, 56.$$

$$D_2 = D_1 - 555, 56.$$

$$D_3 = D_2 - 555, 56.$$

$$D_n = D_{n-1} - 555, 56.$$

• Expression de l_2 en fonction de l_1 :

$$I_2 = D_1 \times i = (D_0 - A) \times i = D_0 \times i - A \times i$$

$$I_2 = I_1 - A \times i = I_1 - 555, 56 \times 0,00425$$

$$I_2 = I_1 - 2,36.$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \in \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	_555,56 980,56€	$A_1 = 555, 56 $	<i>I</i> ₁ = 425€ ∖	$D_{-2,36} = 99444,44 \le$
2			$A_2 = 555, 56 \rightleftharpoons$	<i>I</i> ₂ = 422,64€ ₹	$D_{\hat{c}} = 98888,88 \neq 0$
3	D ₂ = 98888,88€ ≺	975,84€	<i>A</i> ₃ = 555,56€	I ₃ = 420,28€ ✓	$D_3 = 98333,32 =$
4	D ₃ = 98333,32€ ₹	<i>a</i> ₄ = 973,48€	<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€	<i>D</i> ₄ = 97777,76€

• Progression des
$$D_n$$
:

$$D_1 = D_0 - 555, 56.$$

$$D_2 = D_1 - 555, 56.$$

$$D_3 = D_2 - 555, 56.$$

$$D_n = D_{n-1} - 555, 56.$$

• Expression de l_2 en fonction de l_1 :

$$I_2 = D_1 \times i = (D_0 - A) \times i = D_0 \times i - A \times i$$

$$I_2 = I_1 - A \times i = I_1 - 555, 56 \times 0,00425$$

$$I_2 = I_1 - 2,36.$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \in \mathbb{R}$	_555,56 980,56€	$A_1 = 555, 56 $	<i>I</i> ₁ = 425€ √	$D_{-2,36} = 99444,44 \le$
2	$D_1 = 99444,44 \leqslant \checkmark$		$A_2 = 555, 56 =$	<i>I</i> ₂ = 422,64€ ≺	$D_{=2.36} = 98888,88 = $
3	D ₂ = 98888,88€ ₹	975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€ ≺	$D_2 = 98333,32 \le$
4	D ₃ = 98333,32€ ✓	<i>a</i> ₄ = 973,48€	<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€ ✓	D ₄ = 97777,76€

• Progression des
$$D_n$$
:

$$D_1 = D_0 - 555, 56.$$

$$D_2 = D_1 - 555, 56.$$

$$D_3 = D_2 - 555, 56.$$

$$D_n = D_{n-1} - 555, 56.$$

• Expression de
$$I_2$$
 en fonction de I_1 :

$$I_2 = D_1 \times i = (D_0 - A) \times i = D_0 \times i - A \times i$$

$$I_2 = I_1 - A \times i = I_1 - 555, 56 \times 0,00425$$

$$I_2 = I_1 - 2,36.$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
1	$D_0 = 100000,00 \in \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	_555,56 980,56€	$A_1 = 555, 56 \rightleftharpoons$	<i>I</i> ₁ = 425€ ∖	$D_{-2.36} = 99444,44 \le$
2	D ₁ = 99444,44€ ≺	3. — 978,20€	$A_2 = 555, 56 =$	<i>I</i> ₂ = 422,64€ ≺	$D_{\hat{a}} = 98888,88 \in$
3	D ₂ = 98888,88€ ≺	3, - -555,56 975,84€	<i>A</i> ₃ = 555,56€	<i>I</i> ₃ = 420,28€ ≺	$D_{\frac{-2,36}{2}} = 98333,32 \in$
4	D ₃ = 98333,32€ ✓	a ₄ = 973,48€	<i>A</i> ₄ = 555,56€	<i>I</i> ₄ = 417,92€ ✓	D ₄ = 97777,76€

Progression des D_n : Expression de I_2 en fonction de I_1 :

Théorème $D_1 = La \text{ suite des capitaux dûs (resp. des intérêts) est arithmétique de raison}$ $D_2 = -A \text{ (resp. } -A \times i\text{)}.$ $D_3 = D_0 - n \times A.$ $I_n = D_0 \times i - (n-1) \times i \times A.$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	$D_{59} =$	a ₆₀ =	A ₆₀ =	<i>I</i> ₆₀ =	$D_{60} =$

Définitions.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	$D_{59} =$	a ₆₀ =	A ₆₀ =	<i>I</i> ₆₀ =	$D_{60} =$

٠.		Δ:	la	4:	itρ	60) :																
	4	<u> </u>	<u>ıu</u>	uc	icc	-00																	
								4								 							
									1														
									1	1						 3						1	

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	$D_{59} =$	$a_{60} =$	$A_{60} =$	<i>I</i> ₆₀ =	$D_{60} =$

$$D_{59} = D_0 - 59 \times A$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ =	a ₆₀ =	A ₆₀ =	<i>I</i> ₆₀ =	$D_{60} =$

$$D_{59} = D_0 - 59 \times A = 100000 - 59 \times 555,56$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ = 67221,96€	a ₆₀ =	A ₆₀ =	<i>I</i> ₆₀ =	D ₆₀ =

$$D_{59} = D_0 - 59 \times A = 1000000 - 59 \times 555, 56 = 67221, 96$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ = 67221,96€	$a_{60} =$	A ₆₀ =	<i>I</i> ₆₀ =	$D_{60} =$

$$D_{59} = D_0 - 59 \times A = 100000 - 59 \times 555, 56 = 67221, 96 \stackrel{\bullet}{\leq}$$
.

$$I_{60} = D_{59} \times i$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ = 67221,96€	a ₆₀ =	A ₆₀ =	<i>I</i> ₆₀ =	$D_{60} =$

$$D_{59} = D_0 - 59 \times A = 100000 - 59 \times 555, 56 = 67221, 96 \stackrel{\bullet}{\leq}$$
.

$$I_{60} = D_{59} \times i = 67221,96 \times 0,00425$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ = 67221,96€	$a_{60} =$	A ₆₀ =	<i>I</i> ₆₀ = 285,69€	$D_{60} =$

$$D_{59} = D_0 - 59 \times A = 100000 - 59 \times 555, 56 = 67221, 96 \in$$
.

$$I_{60} = D_{59} \times i = 67221, 96 \times 0,00425 = 285,69.$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ = 67221,96€	<i>a</i> ₆₀ =	$A_{60} = 555, 56 \le$	<i>I</i> ₆₀ = 285,69€	$D_{60} =$

$$D_{59} = D_0 - 59 \times A = 100000 - 59 \times 555, 56 = 67221, 96 \stackrel{\bullet}{\in}$$
.

$$I_{60} = D_{59} \times i = 67221, 96 \times 0,00425 = 285,69.$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ = 67221,96€	<i>a</i> ₆₀ =	$A_{60} = 555, 56 \le$	<i>I</i> ₆₀ = 285,69€	$D_{60} =$

$$D_{59} = D_0 - 59 \times A = 100000 - 59 \times 555, 56 = 67221, 96 \stackrel{\bullet}{\leq}$$
.

$$I_{60} = D_{59} \times i = 67221, 96 \times 0,00425 = 285,69.$$

$$a_{60} = I_{60} + A$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ = 67221,96€	a ₆₀ =	$A_{60} = 555, 56 \le$	<i>I</i> ₆₀ = 285,69€	D ₆₀ =

$$D_{59} = D_0 - 59 \times A = 100000 - 59 \times 555, 56 = 67221, 96 \stackrel{\bullet}{\leq}$$
.

$$I_{60} = D_{59} \times i = 67221, 96 \times 0,00425 = 285,69.$$

$$a_{60} = I_{60} + A = 285,69 + 555,56$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	$D_{59} = 67221,96 \le$	<i>a</i> ₆₀ = 841,26€	$A_{60} = 555, 56 \le$	<i>I</i> ₆₀ = 285,69€	$D_{60} =$

$$D_{59} = D_0 - 59 \times A = 100000 - 59 \times 555, 56 = 67221, 96 \stackrel{\bullet}{\in}$$
.

$$I_{60} = D_{59} \times i = 67221, 96 \times 0,00425 = 285,69.$$

$$a_{60} = I_{60} + A = 285,69 + 555,56 = 841,26.$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ = 67221,96€	<i>a</i> ₆₀ = 841,26€	$A_{60} = 555, 56 =$	<i>I</i> ₆₀ = 285,69€	$D_{60} =$

$$D_{59} = D_0 - 59 \times A = 100000 - 59 \times 555, 56 = 67221, 96 \stackrel{\bullet}{\leq}$$
.

$$I_{60} = D_{59} \times i = 67221, 96 \times 0,00425 = 285,69.$$

$$a_{60} = I_{60} + A = 285,69 + 555,56 = 841,26.$$

$$D_{60} = D_{59} - A$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	D ₅₉ = 67221,96€	<i>a</i> ₆₀ = 841,26€	$A_{60} = 555, 56 =$	<i>I</i> ₆₀ = 285,69€	$D_{60} =$

$$D_{59} = D_0 - 59 \times A = 100000 - 59 \times 555, 56 = 67221, 96 \stackrel{\bullet}{\leq}$$
.

$$I_{60} = D_{59} \times i = 67221, 96 \times 0,00425 = 285,69.$$

$$a_{60} = I_{60} + A = 285,69 + 555,56 = 841,26.$$

$$D_{60} = D_{59} - A = 67221,96 - 555,56$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
60	$D_{59} = 67221,96 \le$	<i>a</i> ₆₀ = 841,26€	$A_{60} = 555, 56 \in$	<i>I</i> ₆₀ = 285,69€	$D_{60} = 66666, 40 \le$

$$D_{59} = D_0 - 59 \times A = 100000 - 59 \times 555, 56 = 67221, 96 \stackrel{\bullet}{\in}$$
.

$$I_{60} = D_{59} \times i = 67221, 96 \times 0,00425 = 285,69.$$

$$a_{60} = I_{60} + A = 285,69 + 555,56 = 841,26.$$

$$D_{60} = D_{59} - A = 67221,96 - 555,56 = 66666,40 \le$$
.

Date	Capital dû en début de mois	Mensualité	lité Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ =	$a_{180} =$	A ₁₈₀ =	I ₁₈₀ =	$D_{180} =$

Définitions.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} =$	$a_{180} =$	$A_{180} =$	l ₁₈₀ =	$D_{180} =$

 AI	2 d	1+0	-1 Ω(η.														
 · / · · ·	a u	arc.	TO	υ.														

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ =	$a_{180} =$	A ₁₈₀ =	I ₁₈₀ =	$D_{180} =$

$$D_{179} = D_0 - 179 \times A$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} =$	$a_{180} =$	A ₁₈₀ =	I ₁₈₀ =	$D_{180} =$

$$D_{179} = D_0 - 179 \times A = 100000 - 179 \times 555,56$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 554,76€	$a_{180} =$	A ₁₈₀ =	I ₁₈₀ =	$D_{180} =$

$$D_{179} = D_0 - 179 \times A = 100000 - 179 \times 555, 56 = 554, 76 .$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 554,76€	$a_{180} =$	$A_{180} =$	l ₁₈₀ =	$D_{180} =$

$$D_{179} = D_0 - 179 \times A = 100000 - 179 \times 555, 56 = 554, 76$$

$$I_{180} = D_{179} \times i$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 554,76€	$a_{180} =$	A ₁₈₀ =	I ₁₈₀ =	$D_{180} =$

$$D_{179} = D_0 - 179 \times A = 100000 - 179 \times 555, 56 = 554, 76$$

$$I_{180} = D_{179} \times i = 554,76 \times 0,00425$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	$D_{179} = 554,76 \le$	$a_{180} =$	$A_{180} =$	<i>I</i> ₁₈₀ = 2,36€	$D_{180} =$

$$I_{180} = D_{179} \times i = 554,76 \times 0,00425 = 2,36.$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 554,76€	$a_{180} =$	$A_{180} = 554,76 \le$	<i>I</i> ₁₈₀ = 2,36€	$D_{180} =$

$$D_{179} = D_0 - 179 \times A = 100000 - 179 \times 555, 56 = 554, 76$$

$$I_{180} = D_{179} \times i = 554,76 \times 0,00425 = 2,36.$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 554,76€	$a_{180} =$	$A_{180} = 554,76 \le$	<i>I</i> ₁₈₀ = 2,36€	$D_{180} =$

$$D_{179} = D_0 - 179 \times A = 100000 - 179 \times 555, 56 = 554, 76$$

$$I_{180} = D_{179} \times i = 554,76 \times 0,00425 = 2,36.$$

$$a_{180} = I_{180} + A$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 554,76€	$a_{180} =$	$A_{180} = 554,76 \le$	<i>I</i> ₁₈₀ = 2,36€	$D_{180} =$

$$D_{179} = D_0 - 179 \times A = 100000 - 179 \times 555, 56 = 554, 76$$

$$I_{180} = D_{179} \times i = 554,76 \times 0,00425 = 2,36.$$

$$a_{180} = l_{180} + A = 2,36 + 554,76$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 554,76€	$a_{180} = 557, 12 \le$	$A_{180} = 554,76 \le$	<i>I</i> ₁₈₀ = 2,36€	$D_{180} =$

$$D_{179} = D_0 - 179 \times A = 100000 - 179 \times 555, 56 = 554, 76$$

$$I_{180} = D_{179} \times i = 554,76 \times 0,00425 = 2,36.$$

$$a_{180} = l_{180} + A = 2,36 + 554,76 = 557,12.$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 554,76€	$a_{180} = 557, 12 \le$	$A_{180} = 554,76 \le$	<i>I</i> ₁₈₀ = 2,36€	$D_{180} =$

$$D_{179} = D_0 - 179 \times A = 100000 - 179 \times 555, 56 = 554, 76$$

$$I_{180} = D_{179} \times i = 554,76 \times 0,00425 = 2,36.$$

$$a_{180} = l_{180} + A = 2,36 + 554,76 = 557,12.$$

$$D_{180} = D_{179} - A_{180}$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 554,76€	$a_{180} = 557, 12 \le$	$A_{180} = 554,76 \le$	<i>I</i> ₁₈₀ = 2,36€	$D_{180} =$

$$D_{179} = D_0 - 179 \times A = 100000 - 179 \times 555, 56 = 554, 76$$

$$I_{180} = D_{179} \times i = 554,76 \times 0,00425 = 2,36.$$

$$a_{180} = l_{180} + A = 2,36 + 554,76 = 557,12.$$

$$D_{180} = D_{179} - A_{180} = 554,76 - 554,76$$

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 554,76€	<i>a</i> ₁₈₀ = 557, 12€	$A_{180} = 554,76 \le$	<i>I</i> ₁₈₀ = 2,36€	D ₁₈₀ = 0,00€

$$I_{180} = D_{179} \times i = 554,76 \times 0,00425 = 2,36.$$

$$a_{180} = l_{180} + A = 2,36 + 554,76 = 557,12.$$

$$D_{180} = D_{179} - A_{180} = 554,76 - 554,76 = 0,00$$
€.

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 554,76€	$a_{180} = 557, 12 \le$	$A_{180} = 554,76 \le$	<i>I</i> ₁₈₀ = 2,36€	$D_{180} = 0,00 =$

A la date 180 :

$$D_{179} = D_0 - 179 \times A = 100000 - 179 \times 555, 56 = 554, 76$$

$$I_{180} = D_{179} \times i = 554,76 \times 0,00425 = 2,36.$$

$$a_{180} = l_{180} + A = 2,36 + 554,76 = 557,12.$$

$$D_{180} = D_{179} - A_{180} = 554,76 - 554,76 = 0,00 \le$$
.

Le prêt est remboursé!

Date	Capital dû en début de mois	Mensualité	Amortissement	Intérêt	Capital dû en fin de mois
180	D ₁₇₉ = 554,76€	$a_{180} = 557, 12 \le$	A ₁₈₀ = 554,76€	<i>I</i> ₁₈₀ = 2,36€	$D_{180} = 0,00 =$

A la date 180 :

$$D_{179} = D_0 - 179 \times A = 100000 - 179 \times 555, 56 = 554, 76$$

$$I_{180} = D_{179} \times i = 554,76 \times 0,00425 = 2,36.$$

$$a_{180} = l_{180} + A = 2,36 + 554,76 = 557,12.$$

$$D_{180} = D_{179} - A_{180} = 554,76 - 554,76 = 0,00$$
€.

Le prêt est remboursé!

Remarque : le dernier amortissement n'a pas la même valeur que les autres.