On a donc 3,88 V en direct aux bornes de la jonction JBE2; celle-ci ne peut être bloquée donc Tr2 ne peut être bloqué
Cliquez ici
4
Calculer l'intensité dans R3 et celle dans R2. Vérifier que Tr1 est saturé
Tr2 est passant donc Vbe2 = -0,7 V ; le courant Ir3 orienté vers le bas est Ir3 = -Vbe2 / R3 = 39 µA
Vr2 = E' - Vce1 - Vr3 = 4,2 V et Ir2 = Ic1 = 894 µA
Ic1 / Ib1 = 69 < b1 donc Tr1 est bien saturé
Cliquez ici
5
Montrer que Tr3 et Tr4 ne peuvent être bloqués et que Tr2 est saturé
Tr2 étant passant, on a Ic2 < 0 donc sortant par l'émetteur de Tr2
Ib3 = -Ic2 > 0 donc Tr3 ne peut être bloqué et Ic3 > 0
Ie3 = Ic3 > 0 donc Ib4 > 0 ; Tr4 ne peut être bloqué
Ir3 = Ir2 + Ib2 donc Ib2 = 855 µA
Si Tr2 est dans l'état linéaire Ic2 = b2.Ib2 = 100 * 855 µA = 85,5 mA
Tr3 étant passant Vbe3 = 0,7 V ; Tr4 étant un Darlington sa tension base - émetteur à l'état passant est Vbe4 = 1,4 V
Vr4 orientée vers la droite est Vr4 = -R4.Ic2 = 12,85 V
Vbe4 + Vbe3 + Vr4 - Vce2 = E' donne Vce2 = 9,93 V
Or pour un transistor PNP Vce est négatif donc l'hypothèse Tr2 linéaire est fausse; comme Tr2 ne peut être bloqué, il est saturé
Cliquez ici
6
Calculer le courant collecteur de Tr2 et en déduire que Tr3 est saturé
Cliquez ici
7
Calculer le courant collecteur de Tr3 et en déduire que Tr4 est saturé
Tr2 étant saturé Vce2 = -0,1 V; Vbe4 + Vbe3 + Vr4 - Vce2 = E' donne
Vr4 = 2,28 V soit Ic2 = -Vr4 / R4 = -18,7 mA ; Ib3 = -Ic2 =18,7 mA
Si Tr3 est dans l'état linéaire Ic3 = b3.Ib3 = 40 * 18,7 mA = 747 mA
Vbe4 + Vce3 + R5.Ic3 = E' donne Vce3 = -12,8 V
Or pour un transistor NPN Vce est positif donc l'hypothèse Tr3 linéaire est fausse; comme Tr3 ne peut être bloqué, il est saturé
Tr3étant saturé, on a Vce3 = 0,1 V donc
Vr5 = E' - Vce3 - Vbe4 = 3,5 V ; Ic3 =Vr5 / R5 = 159 mA
Vr6 = Vbe4 = 1,4 V donc Ir6 = 30 mA
Ib4 = Ie3 - Ir6 = Ic3 - Ir6 = 129 mA
Si Tr4 est dans l'état linéaire Ic4 = b4.Ib4 = 120 * 129 mA = 15,5 A
Vce4 + R7.Ic4 = E donne Vce4 = -113 V
Or pour un transistor NPN Vce est positif donc l'hypothèse Tr4 linéaire est fausse; comme Tr4 ne peut être bloqué, il est saturé
Cliquez ici
8
Calculer l'intensité dans R7
Tr4 étant saturé, on a Vce4 = 0,1 V
Vr7 = E - Vce4 = 119,9 V ; Ic4 =Vr7 / R7 = 7,99 A
Cliquez ici
9
Calculer la puissance dissipée par chaque résistance et chaque transistor
Dans les résistances, on dissipe R.I² et dans les transistors Vce.Ic
Elément
Tension
Courant
Puissance
R1
4,29 V
13 µA
56 µW
R2
4,2 V
894 µA
3,8 mW
R3
0,7 V
39 µA
27 µW
R4
2,8 V
18,7 mA
52 mW
R5
3,5 V
159 mA
557 mW
R6
1,4 V
30 mA
42 mW
R7
119,9 V
8 A
960 W
Tr1
0,1 V
220 µA
22 µW
Tr2
-0,1 V
-18,7 mA
1,87 mW
Tr3
0,1 V
159 mA
16 mW
Tr4
0,1 V
8 A
800 mW
Cliquez ici
On veut synthétiser le schéma ci-contre :
Le transistor Tr1 fonctionne en commutation. La tension ve est un créneau symétrique d'amplitude crête à crête 10 V et le courant ie ne doit pas dépasser 1 mA
1
Choisir le transistor Tr1
Tr1 est de type PNP
Sa tension de blocage doit être supérieure à 24 V
En saturation Ic = E / R1 =5,1 A
On choisit un transistor de type MJE4353 ou un Darlington BDX88C
Cliquez ici
2
Pourquoi est-il préférable de choisir un Darlington ?
Si on choisit un transistor simple le gain forcé sera de l'ordre de 5, il faudra donc un courant de base de l'ordre de 1 A ; le bloc de commande devra donc amplifier le courant d'un facteur 1 000; il devra comporter 2 à trois étages d'amplification
Cliquez ici
3
On choisit un taux de saturation de 20 pour Tr1; essayer une synthèse avec un seul étage d'amplification. Que peut-on en déduire ?
Lorsque Ve = - 5 V, Tr1 et Tr2 sont bloqués
Lorsque Ve = + 5 V, Tr1 et Tr2 sont saturés
Ic1 = 5,1 A ; b1 = 750 donc b1sat = 750 /20 = 37,5 ; Ib1 = Ic1 / b1sat = 136 mA
Vce2 + R2.Ib1-Vbe1 = E ; Vce2 = 0,1 V et Vbe1 = -1,4 V
R2 = 22,5 /0,136 = 165 W ; prenons R2 = 150 W ; Ib1 = Ic2 = 150 mA
On peut prendre pour Tr2 un type 2N1711
b2lin = 100 avec un taux de saturation de 3, b2sat = 33 donc
Ib2 = 4,55 mA > Iemax
Il faut rajouter une étage ou pendre un darlington pour Tr2
Cliquez ici
4
Faire la synthèse du bloc de commande
On garde les composants Tr1, Tr2 et R2 de la question 3
On a donc : Ib2 = 4,55 mA donc Ic3 = Ie3 = 4,55 mA
Tr3 doit pouvoir conduire ce courant en saturation et supporter 6 V au blocage; on peut prendre un type BC107
Vbe2 + Vce3 + R3.Ic3 = 6 V donne R3 = 1,14 kW soit R3 = 1 kW et Ic3 = 5,2 mA
b3lin = 110 avec un taux de saturation de 3, b3sat = 37 donc Ib3 = 0,14 mA <Iemax
Vbe2 + Vbe3 + R4.Ib3 = 5 V donne R4 = 25,5 kW soit R4 = 22 kW
Cliquez ici
On étudie le montage ci-contre
1
Le circuit R,C, D' étant débranché, on a relevé les graphes suivants
1.1
Quelles sont les valeurs de E et I ?
E = 48 V et I = 1 A
Cliquez ici
1.2
Quels sont les temps de fermeture et d'ouverture ?
Temps de fermeture = temps entre l'instant depassage de la commande au niveau haut et l'instant de passage de ic à 90 % de Icsat
ton = 575 ns
Temps d'ouverture = temps entre l'instant depassage de la commande au niveau bas et l'instant de passage de ic à 10 % de Icsat
toff = 580 ns
Cliquez ici
1.3
Estimer l'énergie perdue à la fermeture, celle perdue à l'ouverture et les pertes totales de commutation
A la fermeture ic monte en t1 = 650 ns avec vce = E puis de t1 à t2 = 700 ns, vce s'annule à ic = Cste = 1 A :
A l'ouverture vce monte en t3 = 150 ns avec ic = 1 Apuis de t3 à t4 = 550 ns, ic s'annule à vce = Cste = 48 V:
L'énergie totale perdue est donc de 49,2 µJ . La période étant de 2 µs, on a une puissance W /T = 24,6 W
Cliquez ici
2
Calcul du circuit d'aide à l'ouverture pour une fréquence de commande de 25 kHz
2.1
Calculer la capacité du condensateur C
Cli
Les deux conditions sont :
C >> I.tf/2.E et C < (tblocmin - toff).I /E
I = 1 A ; E = 48 V ; tf = temps de descente de ic = 500 ns ; tblocmin = T/2 = 20 µs
C >> 5,2 nF et C < 405 nF on peut prendre C = 68 nF