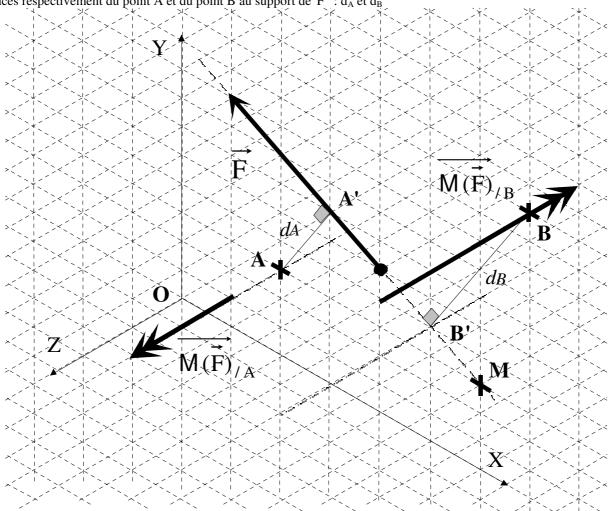
♦ MOMENTS D'UNE FORCE

Vecteur $\vec{F} = X_F \vec{X} + Y_F \vec{Y}$, norme $\|\vec{F}\| = \sqrt{{X_F}^2 + {Y_F}^2}$, (\vec{F} choisi dans le plan XY pour simplification de la représentation)

Distances respectivement du point A et du point B au support de $F: d_A$ et d_B



Expressions vectorielles du moment de la force F par rapport au point A et par rapport au point B

Expressions vectorienes du moment de la force 1º pai rapport au point A et pai rapport au	point D
à partir de la définition vectorielle (produit vectoriel)	à partir du « bras de levier »
(quelles que soient les positions de A, B et \overrightarrow{F} dans le plan XY)	(pour les positions de A, B et \overrightarrow{F} de la fig)
$\overrightarrow{M(F)}_{/A} = \overrightarrow{AM} \wedge \overrightarrow{F} = \begin{pmatrix} \overrightarrow{X} & \overrightarrow{Y} & \overrightarrow{Z} \\ x_M - x_A & y_M - y_A & 0 \\ X_F & Y_F & 0 \end{pmatrix} = [(x_M - x_A) \times Y_F - (y_M - y_A) \times X_F] \overrightarrow{Z}$	$\overrightarrow{M(F)}_{/A} = + \left(\left\ \overrightarrow{F} \right\ \times d_A \right) \overrightarrow{Z}$ (sens de rotation >0 donc sens du vecteur moment >0)
$\overrightarrow{M(F)}_{/B} = \overrightarrow{BM} \wedge \overrightarrow{F} = \begin{pmatrix} \overrightarrow{X} & \overrightarrow{Y} & \overrightarrow{Z} \\ x_M - x_B & y_M - y_B & 0 \\ X_F & Y_F & 0 \end{pmatrix} = [(x_M - x_B) \times Y_F - (y_M - y_B) \times X_F] \overrightarrow{Z}$	$\overrightarrow{M(F)}_{/B} = -(\overrightarrow{F} \times d_B)\overrightarrow{Z}$ (sens de rotation <0 donc sens du vecteur moment <0)

♦ ELEMENTS DE REDUCTION D'UN SYSTEME DE VECTEURS (TORSEUR)

Une action mécanique de II/I (modélisée par un système de n de forces $\{P_i, \overrightarrow{f_i}\}$) est caractérisée au point O par un torseur $\left\{ \mathcal{F}_{II/I} \right\}_{O} \text{ à deux vecteurs } \overrightarrow{\mathcal{R}_{O}}_{II/I} = \sum \overrightarrow{f_{i}} \text{ (résultante générale) et } \overrightarrow{\mathcal{M}_{O}}_{II/I} = \sum \overrightarrow{OP_{i}} \wedge \overrightarrow{f_{i}} \text{ (moment résultant au point O)}.$ Le moment résultant de cette action mécanique vérifie la relation de changement de point du moment d'un torseur

$$\left\{ \mathcal{F}_{II/I} \right\}_{O} = \left\{ \begin{array}{l} \overrightarrow{\mathcal{R}_{O}}_{II/I} = X_{O} \overrightarrow{X} + Y_{O} \overrightarrow{Y} + Z_{O} \overrightarrow{Z} \\ \overrightarrow{\mathcal{M}_{O}}_{II/I} = L_{O} \overrightarrow{X} + M_{O} \overrightarrow{Y} + N_{O} \overrightarrow{Z} \right\}_{O.R}$$

$$\left\{ \mathcal{F}_{II/I} \right\}_{O} = \left\{ \overrightarrow{\mathcal{R}_{O}}_{II/I} = X_{O} \overrightarrow{X} + Y_{O} \overrightarrow{Y} + Z_{O} \overrightarrow{Z} \right\}_{O,R}$$

$$\left\{ \mathcal{F}_{II/I} \right\}_{A} = \left\{ \overrightarrow{\mathcal{R}_{A}}_{II/I} = \overrightarrow{\mathcal{R}_{O}}_{II/I} + \overrightarrow{\mathcal{M}_{O}}_{II/I} + \overrightarrow{\mathcal{M}_{O}}_{II/I} \right\}_{A,R}$$