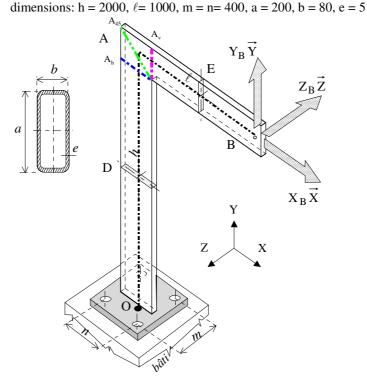
TOULOUSE Génie Mécanique et Productique Techniques Aerospatiales

DIMENSIONNEMENT DES STRUCTURES

EXERCICE DE PERFECTIONNEMENT SUR LES BASES DU COMPORTEMENT ELASTIQUE


ex-potence-classiq.doc/version du 16/11/2010/JG

POTENCE

1. Mise en situation

La structure représentée est composée d'une potence (constituée de deux profilés rectangulaires creux soudés) soudée à une semelle. L'ensemble est liaison encastrement avec un bâti par l'intermédiaire de quatre boulons. Cette structure est sollicitée par un chargement extérieur appliqué en B et modélisé par $\vec{B} = X_B \vec{X} + Y_B \vec{Y} + Z_B \vec{Z}$. Cette structure est en acier E 295 (R_e =295 MPa). Pour tous les calculs on négligera l'épaisseur de la semelle.

Application numérique: chargement en B: $X_B = +1000$ (N), $Y_B = +3000$ (N), $Z_B = -500$ (N).

2. Travail demandé

2.1 Torseur des actions transmissibles du sol sur (semelle + potence) en O

2.2 Torseurs de cohésion

En utilisant intégralement la méthodologie développée dans les documents de cours, rechercher les torseurs de cohésion dans les sections E ($AE=\ell/2$) et D ($OD=\hbar/2$) et donner leur représentation graphique.

2.3 Critères de dimensionnement

Déterminer les contraintes maximales dans le bras horizontal et le bras vertical de la potence. Donner leur représentation graphique et vérifier la condition de résistance.

2.4 Liaisons structurales

2.4.1 Liaisons soudées

Il s'agit de déterminer les dimensions des cordons continus de soudure (dimension de la corde). On considère le matériau du cordon comme équivalent à celui de la potence

- entre le bras vertical et le bras horizontal (trois configurations peuvent être proposées en A : A_v, A_h, A₄₅)
- entre le bras vertical et la semelle

2.4.2 Liaison boulonnée

Il s'agit de déterminer les dimensions des 4 boulons de fixation de la semelle sur la potence. On choisit des boulons de classe 5.6, soit $R_{\rm r}$ = 500 MPa et $R_{\rm e}$ = 300 MPa. On se placera en situation pénalisante pour la liaison boulonnée: serrage négligé. Prendre connaissance de la méthodologie dans le fichier ressources « resassemblages-boulonnes »